PARP16-the sole ER-resident PARP family member-is gaining attention as a potential therapeutic target for cancer treatment. Nevertheless, the precise function of the catalytic activity of PARP16 is poorly understood. This is primarily due to the lack of inhibitors that are selective for PARP16 over other PARP family members.
View Article and Find Full Text PDFAllosteric coupling between the DNA binding site to the NAD-binding pocket drives PARP-1 activation. This allosteric communication occurs in the reverse direction such that NAD mimetics can enhance PARP-1's affinity for DNA, referred to as type I inhibition. The cellular effects of type I inhibition are unknown, largely because of the lack of potent, membrane-permeable type I inhibitors.
View Article and Find Full Text PDFPARPs (PARP1-16 in humans) are a large family of ADP-ribosyltransferases (ARTs) that have diverse roles in cellular physiology and pathophysiology. Most PARP family members mediate mono-ADP-ribosylation (MARylation) of targets. The function of PARP-mediated MARylation in cells is poorly characterized, due in large part to the paucity of selective small molecule inhibitors of the catalytic activity of individual PARP enzymes.
View Article and Find Full Text PDFSmall-molecule inhibitors have been instrumental in uncovering the biological importance of poly-ADP-ribose polymerases (PARPs), a family of enzymes involved in wide-ranging aspects of cell biology. However, few PARP inhibitors are tested against the entire family of PARPs. This makes it impossible to confidently assess the role of a single PARP in cellular processes using small molecules.
View Article and Find Full Text PDFPoly(ADP-ribose) polymerase 7 (PARP-7) has emerged as a critically important member of a large enzyme family that catalyzes ADP-ribosylation in mammalian cells. PARP-7 is a critical regulator of the innate immune response. What remains unclear is the mechanism by which PARP-7 regulates this process, namely because the protein targets of PARP-7 mono-ADP-ribosylation (MARylation) are largely unknown.
View Article and Find Full Text PDFAn outbreak of the novel coronavirus SARS-CoV-2, the causative agent of COVID-19 respiratory disease, has infected over 290,000 people since the end of 2019, killed over 12,000, and caused worldwide social and economic disruption. There are currently no antiviral drugs with proven efficacy nor are there vaccines for its prevention. Unfortunately, the scientific community has little knowledge of the molecular details of SARS-CoV-2 infection.
View Article and Find Full Text PDFA newly described coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is the causative agent of coronavirus disease 2019 (COVID-19), has infected over 2.3 million people, led to the death of more than 160,000 individuals and caused worldwide social and economic disruption. There are no antiviral drugs with proven clinical efficacy for the treatment of COVID-19, nor are there any vaccines that prevent infection with SARS-CoV-2, and efforts to develop drugs and vaccines are hampered by the limited knowledge of the molecular details of how SARS-CoV-2 infects cells.
View Article and Find Full Text PDFADP-ribosylation is a reversible chemical modification catalysed by ADP-ribosyltransferases such as PARPs that utilize nicotinamide adenine dinucleotide (NAD+) as a cofactor to transfer monomer or polymers of ADP-ribose nucleotide onto macromolecular targets such as proteins and DNA. ADP-ribosylation plays an important role in several biological processes such as DNA repair, transcription, chromatin remodelling, host-virus interactions, cellular stress response and many more. Using biochemical methods we identify RNA as a novel target of reversible mono-ADP-ribosylation.
View Article and Find Full Text PDFPoly-ADP-ribose polymerases (PARPs 1-16) have emerged as major regulators of diverse cellular processes. PARPs can be subclassified based on their ability to catalyze poly-ADP-ribosylation (PARylation) or mono-ADP-ribosylation (MARylation). While much is known about the cellular roles of PARPs that catalyze PARylation (e.
View Article and Find Full Text PDFPoly-ADP-ribose polymerases (PARPs1-16) play pivotal roles in diverse cellular processes. PARPs that catalyze poly-ADP-ribosylation (PARylation) are the best characterized PARP family members because of the availability of potent and selective inhibitors for these PARPs. There has been comparatively little success in developing selective small-molecule inhibitors of PARPs that catalyze mono-ADP-ribosylation (MARylation), limiting our understanding of the cellular role of MARylation.
View Article and Find Full Text PDFAlphaviruses are plus-strand RNA viruses that cause encephalitis, rash, and arthritis. The nonstructural protein (nsP) precursor polyprotein is translated from genomic RNA and processed into four nsPs. nsP3 has a highly conserved macrodomain (MD) that binds ADP-ribose (ADPr), which can be conjugated to protein as a posttranslational modification involving transfer of ADPr from NAD by poly ADPr polymerases (PARPs).
View Article and Find Full Text PDFCurr Top Microbiol Immunol
August 2019
Over the last 60 years, poly-ADP-ribose polymerases (PARPs, 17 family members in humans) have emerged as important regulators of physiology and disease. Small-molecule inhibitors have been essential tools for unraveling PARP function, and recently the first PARP inhibitors have been approved for the treatment of various human cancers. However, inhibitors have only been developed for a few PARPs and in vitro profiling has revealed that many of these exhibit polypharmacology across the PARP family.
View Article and Find Full Text PDFPoly-ADP-ribose polymerases (also known as ADP-ribosyltransferases or ARTDs) are a family of 17 enzymes in humans that catalyze the reversible posttranslational modification known as ADP-ribosylation. PARPs are implicated in diverse cellular processes, from DNA repair to the unfolded protein response. Small-molecule inhibitors of PARPs have improved our understanding of PARP-mediated biology and, in some cases, have emerged as promising treatments for cancers and other human diseases.
View Article and Find Full Text PDFThe ongoing concurrent outbreaks of Zika, Chikungunya, and dengue viruses in Latin America and the Caribbean highlight the need for development of broad-spectrum antiviral treatments. The type I interferon (IFN) system has evolved in vertebrates to generate tissue responses that actively block replication of multiple known and potentially zoonotic viruses. As such, its control and activation through pharmacological agents may represent a novel therapeutic strategy for simultaneously impairing growth of multiple virus types and rendering host populations resistant to virus spread.
View Article and Find Full Text PDF