Publications by authors named "Ilona U Rafalska-Metcalf"

Protein tyrosine phosphatase B (PtpB) from Mycobacterium tuberculosis (Mtb) extends the bacteria's survival in hosts and hence is a potential target for Mtb-specific drugs. To study how Mtb-specific sequence insertions in PtpB may regulate access to its active site through large-amplitude conformational changes, we performed free-energy calculations using an all-atom explicit solvent model. Corroborated by biochemical assays, the results show that PtpB's active site is controlled via an "either/or" compound conformational gating mechanism, an unexpected discovery that Mtb has evolved to bestow a single enzyme with such intricate logical operations.

View Article and Find Full Text PDF

Nanotechnology has opened up the opportunity to probe, sense, and manipulate the chemical environment of biological systems with an unprecedented level of spatiotemporal control. A major obstacle to the full realization of these novel technologies is the lack of a general, robust, and simple method for the delivery of arbitrary nanostructures to the cytoplasm of intact live cells. Here, we identify a new delivery modality, based on mechanical disruption of the plasma membrane, which efficiently mediates the delivery of nanoparticles to the cytoplasm of mammalian cells.

View Article and Find Full Text PDF

Unlike the core histones, which are incorporated into nucleosomes concomitant with DNA replication, histone H3.3 is synthesized throughout the cell cycle and utilized for replication-independent (RI) chromatin assembly. The RI incorporation of H3.

View Article and Find Full Text PDF

Promyelocytic leukemia nuclear bodies (PML-NBs)/nuclear domain 10s (ND10s) are nuclear structures that contain many transcriptional and chromatin regulatory factors. One of these, Sp100, is expressed from a single-copy gene and spliced into four isoforms (A, B, C, and HMG), which differentially regulate transcription. Here we evaluate Sp100 function in single cells using an inducible cytomegalovirus-promoter-regulated transgene, visualized as a chromatinized transcription site.

View Article and Find Full Text PDF

Imaging molecularly defined regions of chromatin in single living cells during transcriptional activation has the potential to provide new insight into gene regulatory mechanisms. Here, we describe a method for isolating cell lines with multi-copy arrays of reporter transgenes, which can be used for real-time high-resolution imaging of transcriptional activation dynamics in single cells.

View Article and Find Full Text PDF

Histone H3.3 is a constitutively expressed H3 variant implicated in the epigenetic inheritance of chromatin structures. Recently, the PML-nuclear body (PML-NB)/Nuclear Domain 10 (ND10) proteins, Daxx and ATRX, were found to regulate replication-independent histone H3.

View Article and Find Full Text PDF

The repair of DNA damage in highly compact, transcriptionally silent heterochromatin requires that repair and chromatin packaging machineries be tightly coupled and regulated. KAP1 is a heterochromatin protein and co-repressor that binds to HP1 during gene silencing but is also robustly phosphorylated by Ataxia telangiectasia mutated (ATM) at serine 824 in response to DNA damage. The interplay between HP1-KAP1 binding/ATM phosphorylation during DNA repair is not known.

View Article and Find Full Text PDF

DNA double-strand breaks (DSBs) initiate extensive local and global alterations in chromatin structure, many of which depend on the ATM kinase. Histone H2A ubiquitylation (uH2A) on chromatin surrounding DSBs is one example, thought to be important for recruitment of repair proteins. uH2A is also implicated in transcriptional repression; an intriguing yet untested hypothesis is that this function is conserved in the context of DSBs.

View Article and Find Full Text PDF

Background: Gene activation is thought to occur through a series of temporally defined regulatory steps. However, this process has not been completely evaluated in single living mammalian cells.

Methodology/principal Findings: To investigate the timing and coordination of gene activation events, we tracked the recruitment of GCN5 (histone acetyltransferase), RNA polymerase II, Brd2 and Brd4 (acetyl-lysine binding proteins), in relation to a VP16-transcriptional activator, to a transcription site that can be visualized in single living cells.

View Article and Find Full Text PDF

The development of non-invasive methods of visualizing proteins and nucleic acids in living cells has provided profound insight into how they move and interact with each other in vivo. It is possible to evaluate basic mechanisms of gene expression, and to define their temporal and spatial parameters by using this methodology to label endogenous genes and make reporter constructs that allow specific DNA and RNA regulatory elements to be localized. This Commentary highlights recent reports that have used these techniques to study nuclear organization, transcription factor dynamics and the kinetics of RNA synthesis.

View Article and Find Full Text PDF