Our skin is continuously exposed to different amphiphilic substances capable of interaction with its lipids and proteins. We describe the effect of a saponin-rich soapwort extract and of four commonly employed synthetic surfactants: sodium lauryl sulfate (SLS), sodium laureth sulfate (SLES), ammonium lauryl sulfate (ALS), cocamidopropyl betaine (CAPB) on different human skin models. Two human skin cell lines were employed: normal keratinocytes (HaCaT) and human melanoma cells (A375).
View Article and Find Full Text PDFThe effect of a saponin-rich extract from rhizomes of Soapwort (Saponaria officinalis L) and four synthetic surfactants: sodium lauryl sulphate (SLS), sodium laureth sulphate (SLES), ammonium lauryl sulphate (ALS) and cocamidopropyl betaine (CAPB) on two model lipid monolayers is analyzed using surface pressure, surface dilatational rheology and fluorescence microscopy. The following monolayers were employed: dipalmitoylphosphatidylcholine/cholesterol mixture in a molar ratio of 7:3 (DPPC/CHOL) and Ceramide [AP]/stearic acid/cholesterol in a molar ratio of 14:14:10 (CER/SA/CHOL). They mimicked a general bilayer structure and an intercellular lipid mixture, respectively.
View Article and Find Full Text PDFThe study discusses the effect of a quinoa seed coat extract on a cholesterol-based Langmuir monolayer mimicking the intercellular lipid mixture in the skin's outermost layer - stratum corneum. Besides cholesterol (CHOL), the monolayer contains also stearic acid (SA) and ceramide VI (CER), in a molar ratio of 10:14:14. Three quinoa extracts were tested for their surface activity: a) from the whole seed, b) from the dehulled seed, and c) from the seed coat.
View Article and Find Full Text PDF