Publications by authors named "Ilmo Kukkonen"

Microbial life in the deep subsurface occupies rock surfaces as attached communities and biofilms. Previously, epilithic Fennoscandian deep subsurface bacterial communities were shown to host genetic potential, especially for heterotrophy and sulfur cycling. Acetate, methane, and methanol link multiple biogeochemical pathways and thus represent an important carbon and energy source for microorganisms in the deep subsurface.

View Article and Find Full Text PDF

The deep terrestrial biosphere hosts vast sessile rock surface communities and biofilms, but thus far, mostly planktic communities have been studied. We enriched deep subsurface microbial communities on mica schist in microcosms containing bedrock groundwater from the depth of 500 m from Outokumpu, Finland. The biofilms were visualized using scanning electron microscopy, revealing numerous different microbial cell morphologies and attachment strategies on the mica schist surface, e.

View Article and Find Full Text PDF

In 2016, an outbreak of anthrax killing thousands of reindeer and affecting dozens of humans occurred on the Yamal peninsula, Northwest Siberia, after 70 years of epidemiological situation without outbreaks. The trigger of the outbreak has been ascribed to the activation of spores due to permafrost thaw that was accelerated during the summer heat wave. The focus of our study is on the dynamics of local environmental factors in connection with the observed anthrax revival.

View Article and Find Full Text PDF

Fungi have an important role in nutrient cycling in most ecosystems on Earth, yet their ecology and functionality in deep continental subsurface remain unknown. Here, we report the first observations of active fungal colonization of mica schist in the deep continental biosphere and the ability of deep subsurface fungi to attach to rock surfaces under in situ conditions in groundwater at 500 and 967 m depth in Precambrian bedrock. We present an in situ subsurface biofilm trap, designed to reveal sessile microbial communities on rock surface in deep continental groundwater, using Outokumpu Deep Drill Hole, in eastern Finland, as a test site.

View Article and Find Full Text PDF
Article Synopsis
  • - The study demonstrated that real-time seismic monitoring helped manage induced earthquakes during the stimulation of a geothermal well near Helsinki, Finland, by tracking their rates and locations.
  • - Over 49 days in 2018, researchers injected 18,160 m of water into deep crystalline rocks, using a network of 24 seismometers to gather data.
  • - By adjusting pumping pressure and flow rates based on seismic data, the team successfully avoided a significant earthquake (magnitude 2.0), which was a critical limit set by local authorities.
View Article and Find Full Text PDF

The diversity and metabolic functions of deep subsurface ecosystems remain relatively unexplored. Microbial communities in previously studied deep subsurface sites of the Fennoscandian Shield are distinctive to each site. Thus, we hypothesized that the microbial communities of the deep Archaean bedrock fracture aquifer in Romuvaara, northern Finland, differ both in community composition and metabolic functionality from the other sites in the Fennoscandian Shield.

View Article and Find Full Text PDF

Acetate plays a key role as electron donor and acceptor and serves as carbon source in oligotrophic deep subsurface environments. It can be produced from inorganic carbon by acetogenic microbes or through breakdown of more complex organic matter. Acetate is an important molecule for sulfate reducers that are substantially present in several deep bedrock environments.

View Article and Find Full Text PDF

Microorganisms in the deep biosphere are believed to conduct little metabolic activity due to low nutrient availability in these environments. However, destructive penetration to long-isolated bedrock environments during construction of underground waste repositories can lead to increased nutrient availability and potentially affect the long-term stability of the repository systems, Here, we studied how microorganisms present in fracture fluid from a depth of 500 m in Outokumpu, Finland, respond to simple carbon compounds (C-1 compounds) in the presence or absence of sulphate as an electron acceptor. C-1 compounds such as methane and methanol are important intermediates in the deep subsurface carbon cycle, and electron acceptors such as sulphate are critical components of oxidation processes.

View Article and Find Full Text PDF

The deep subsurface hosts diverse life, but the mechanisms that sustain this diversity remain elusive. Here, we studied microbial communities involved in carbon cycling in deep, dark biosphere and identified anaerobic microbial energy production mechanisms from groundwater of Fennoscandian crystalline bedrock sampled from a deep drill hole in Outokumpu, Finland, by using molecular biological analyses. Carbon cycling pathways, such as carbon assimilation, methane production and methane consumption, were studied with cbbM, rbcL, acsB, accC, mcrA and pmoA marker genes, respectively.

View Article and Find Full Text PDF

Microbial life in the nutrient-limited and low-permeability continental crystalline crust is abundant but remains relatively unexplored. Using high-throughput sequencing to assess the 16S rRNA gene diversity, we found diverse bacterial and archaeal communities along a 2516-m-deep drill hole in continental crystalline crust in Outokumpu, Finland. These communities varied at different sampling depths in response to prevailing lithology and hydrogeochemistry.

View Article and Find Full Text PDF

Deep fracture zones in Finnish crystalline bedrock have been isolated for long, the oldest fluids being tens of millions of years old. To accurately measure the native microbial diversity in fracture-zone fluids, water samples were obtained by isolating the borehole fraction spanning a deep subsurface aquifer fracture zone with inflatable packers (500 and 967 m) or by pumping fluids directly from the fracture zone. Sampling frequency was examined to establish the time required for the space between packers to be flushed and replaced by indigenous fracture fluids.

View Article and Find Full Text PDF

This paper demonstrates the first microbiological sampling of the Outokumpu deep borehole (2516 m deep) aiming at characterizing the bacterial community composition and diversity of sulphate-reducing bacteria (SRB) in Finnish crystalline bedrock aquifers. Sampling was performed using a 1500-m-long pressure-tight tube that provided 15 subsamples, each corresponding to a 100-m section down the borehole. Microbial density measurements, as well as community fingerprinting with 16S rRNA gene-based denaturing gradient gel electrophoresis, demonstrated that microbial communities in the borehole water varied as a function of sampling depth.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Ilmo Kukkonen"

  • - Ilmo Kukkonen's research focuses on understanding microbial communities and their ecological roles in deep subsurface environments, with specific studies on biofilm formation, community diversity, and functionality in extreme conditions such as high depths and oligotrophic environments.
  • - Recent studies reveal the significance of various carbon sources (e.g., acetate, methane) and nutrient cycling processes in sustaining microbial life and influencing biofilm development on rock surfaces in deep crystalline bedrock, as highlighted in his articles published in Frontiers in Microbiology.
  • - Kukkonen also investigates the impact of climatic factors on broader ecological issues, such as the anthrax outbreak in Siberia, showcasing the interplay between environmental changes and microbial dynamics in extreme ecosystems.