Publications by authors named "Ilmari Parkkinen"

Electrochemical sensors provide means for real-time monitoring of neurotransmitter release events, which is a relatively easy process in simple electrolytes. However, this does not apply to in vitro environments. In cell culture media, competitively adsorbing molecules are present at concentrations up to 350 000-fold excess compared to the neurotransmitter-of-interest.

View Article and Find Full Text PDF

The endoplasmic reticulum (ER) is the largest organelle of the cell, composed of a continuous network of sheets and tubules, and is involved in protein, calcium (Ca), and lipid homeostasis. In neurons, the ER extends throughout the cell, both somal and axodendritic compartments, and is highly important for neuronal functions. A third of the proteome of a cell, secreted and membrane-bound proteins, are processed within the ER lumen and most of these proteins are vital for neuronal activity.

View Article and Find Full Text PDF

The endoplasmic reticulum (ER) is an organelle that performs several key functions such as protein synthesis and folding, lipid metabolism and calcium homeostasis. When these functions are disrupted, such as upon protein misfolding, ER stress occurs. ER stress can trigger adaptive responses to restore proper functioning such as activation of the unfolded protein response (UPR).

View Article and Find Full Text PDF

Vertically aligned carbon nanofibers (VACNFs) are promising material candidates for neural biosensors due to their ability to detect neurotransmitters in physiological concentrations. However, the expected high rigidity of CNFs could induce mechanical mismatch with the brain tissue, eliciting formation of a glial scar around the electrode and thus loss of functionality. We have evaluated mechanical biocompatibility of VACNFs by growing nickel-catalyzed carbon nanofibers of different lengths and inter-fiber distances.

View Article and Find Full Text PDF

The endoplasmic reticulum (ER) is a multipurpose organelle comprising dynamic structural subdomains, such as ER sheets and tubules, serving to maintain protein, calcium, and lipid homeostasis. In neurons, the single ER is compartmentalized with a careful segregation of the structural subdomains in somatic and neurite (axodendritic) regions. The distribution and arrangement of these ER subdomains varies between different neuronal types.

View Article and Find Full Text PDF

Parkinson's disease (PD) is an age-related neurodegenerative disorder characterized by motor symptoms such as tremor, slowness of movement, rigidity, and postural instability, as well as non-motor features like sleep disturbances, loss of ability to smell, depression, constipation, and pain. Motor symptoms are caused by depletion of dopamine in the striatum due to the progressive loss of dopamine neurons in the substantia nigra pars compacta. Approximately 10% of PD cases are familial arising from genetic mutations in α-synuclein, LRRK2, DJ-1, PINK1, parkin, and several other proteins.

View Article and Find Full Text PDF

MicroRNAs are post-transcriptional regulators of gene expression, crucial for neuronal differentiation, survival, and activity. Age-related dysregulation of microRNA biogenesis increases neuronal vulnerability to cellular stress and may contribute to the development and progression of neurodegenerative diseases. All major neurodegenerative disorders are also associated with oxidative stress, which is widely recognized as a potential target for protective therapies.

View Article and Find Full Text PDF

The cytomegalovirus (CMV) immediate early promoter has been extensively developed and exploited for transgene expression and , including human clinical trials. The CMV promoter has long been considered a stable, constitutive, and ubiquitous promoter for transgene expression. Using two different CMV-based promoters, we found an increase in CMV-driven transgene expression in the rodent brain and in primary neuronal cultures in response to methamphetamine, glutamate, kainic acid, and activation of G protein-coupled receptor signaling using designer receptors exclusively activated by designer drugs (DREADDs).

View Article and Find Full Text PDF

Unbiased estimates of neuron numbers within substantia nigra are crucial for experimental Parkinson's disease models and gene-function studies. Unbiased stereological counting techniques with optical fractionation are successfully implemented, but are extremely laborious and time-consuming. The development of neural networks and deep learning has opened a new way to teach computers to count neurons.

View Article and Find Full Text PDF

Glial cell line-derived neurotrophic factor (GDNF) is one of the most studied neurotrophic factors. GDNF has two splice isoforms, full-length pre-α-pro-GDNF (α-GDNF) and pre-β-pro-GDNF (β-GDNF), which has a 26 amino acid deletion in the pro-region. Thus far, studies have focused solely on the α-GDNF isoform, and nothing is known about the effects of the shorter β-GDNF variant.

View Article and Find Full Text PDF