Context: NLRP9 is a member of nucleotide-binding domain leucine-rich repeat-containing receptors and is found to be associated with many inflammatory diseases. In the current scenario, the identification of promising anti-inflammatory compounds from natural sources by repurposing approach is still relevant for the early prevention and effective management of the disease.
Methods: In the present study, we docked bioactives of Ashwagandha (Withanoside IV, Withanoside V, Withanolide A, Withanolide B, and Sitoindoside IX) and two control drugs against bovine NLRP9 protein.
Extremophilic organisms have the potential to tolerate extremely challenging environments of nature. This property can be accredited to its production of novel secondary metabolites that possess anticancer and other pharmaceutical values. The present study was aimed to investigate the anticancer activity of crude secondary metabolite extract (CSME) obtained from the radiation-tolerant bacterium in triple-negative human breast carcinoma (MDA-MB-231) cells.
View Article and Find Full Text PDFThe correction does not affect the discussion or conclusions of the article. The correct image is given below.
View Article and Find Full Text PDFThe principal objective of this study is to determine the resistance of Deinococcus radiodurans to hydrogen peroxide (HO) induced oxidative stress by inhibiting its thioredoxin reductase (TrxR) antioxidant system. Treatment of D. radiodurans with different TrxR inhibitors such as ebselen, epigallocatechin gallate and auranofin displayed this organism sensitivity to HO treatment in a concentration-dependent manner.
View Article and Find Full Text PDF