Background & Aims: Ulcerative colitis (UC) is characterized by severe inflammation and destruction of the intestinal epithelium, and is associated with specific risk single nucleotide polymorphisms in HLA class II. Given the recently discovered interactions between subsets of HLA-DP molecules and the activating natural killer (NK) cell receptor NKp44, genetic associations of UC and HLA-DP haplotypes and their functional implications were investigated.
Methods: HLA-DP haplotype and UC risk association analyses were performed (UC: n = 13,927; control: n = 26,764).
Membraneless cytoplasmic condensates of mRNAs and proteins, known as RNA granules, play pivotal roles in the regulation of mRNA fate. Their maintenance fine-tunes time and location of protein expression, affecting many cellular processes, which require complex protein distribution. Here, we report that RNA granules-monitored by DEAD-Box helicase 6 (DDX6)-disassemble during neuronal maturation both in cell culture and in vivo.
View Article and Find Full Text PDFRNA-binding proteins (RBPs) act as posttranscriptional regulators controlling the fate of target mRNAs. Unraveling how RNAs are recognized by RBPs and in turn are assembled into neuronal RNA granules is therefore key to understanding the underlying mechanism. While RNA sequence elements have been extensively characterized, the functional impact of RNA secondary structures is only recently being explored.
View Article and Find Full Text PDFRNA-binding proteins (RBPs) are essential regulators controlling both the cellular transcriptome and translatome. These processes enable cellular plasticity, an important prerequisite for growth. Cellular growth is a complex, tightly controlled process.
View Article and Find Full Text PDFmRNA transport restricts translation to specific subcellular locations, which is the basis for many cellular functions. However, the precise process of mRNA sorting to synapses in neurons remains elusive. Here we use Rgs4 mRNA to investigate 3'-UTR-dependent transport by MS2 live-cell imaging.
View Article and Find Full Text PDFWe have recently identified a cholinergic chemosensory cell in the urethral epithelium, urethral brush cell (UBC), that, upon stimulation with bitter or bacterial substances, initiates a reflex detrusor activation. Here, we elucidated cholinergic mechanisms that modulate UBC responsiveness. We analyzed muscarinic acetylcholine receptor (M1-5 mAChR) expression by using RT-PCR in UBCs, recorded [Ca] responses to a bitter stimulus in isolated UBCs of wild-type and mAChR-deficient mice, and performed cystometry in all involved strains.
View Article and Find Full Text PDFBioorg Med Chem Lett
September 2016
Design and optimization of a novel series of imidazo[1,2-b]pyridazine PDE10a inhibitors are described. Compound 31 displays excellent pharmacokinetic properties and was also evaluated as an insulin secretagogue in vitro and in vivo.
View Article and Find Full Text PDFPhys Ther J Policy Adm Leadersh
September 2015
Study Design: Retrospective cross sectional.
Purpose: The purpose of this study was to assess the independent associations between perceived participation in clinical decision making on rehabilitation length of stay, discharge functional status, and discharge setting following inpatient rehabilitation.
Background: Active participation in the inpatient rehabilitation process, which is the most intense post-acute rehabilitation service, should lead to better patient experiences and outcomes.
Purpose: The prevalence of systemic atherosclerosis and overactive bladder/detrusor overactivity increases almost simultaneously with age but an association between these diseases has not yet been proved. We evaluated changes in bladder function and morphology, including vascularization, in apoE(-/-)LDLR(-/-) double knockout mice with systemic atherosclerosis but without central nervous system involvement.
Materials And Methods: Cystometry was performed in awake, freely moving 60-week-old apoE(-/-)LDLR(-/-) mice and C57BL/6N controls.
Bioorg Med Chem Lett
December 2013
Structure-activity relationship (SAR) studies on a highly potent series of arylamide FMS inhibitors were carried out with the aim of improving FMS kinase selectivity, particularly over KIT. Potent compound 17r (FMS IC50 0.7 nM, FMS cell IC50 6.
View Article and Find Full Text PDFAims: In patients with bladder outlet obstruction (BOO), dysregulation of bladder afferent neurons seems to contribute to irritative symptoms. Cholinergic receptors, addressed by both neuronal and non-neuronal (urothelial) acetylcholine, can alter neuronal excitability. Thus we investigated the influence of BOO on the expression of muscarinic (mAChR) and nicotinic (nAChR) acetylcholine receptors in the lumbosacral dorsal root ganglia (DRG) of mice.
View Article and Find Full Text PDFA class of potent inhibitors of colony-stimulating factor-1 receptor (CSF-1R or FMS), as exemplified by 8 and 21, was optimized to improve pharmacokinetic and pharmacodynamic properties and potential toxicological liabilities. Early stage absorption, distribution, metabolism, and excretion assays were employed to ensure the incorporation of druglike properties resulting in the selection of several compounds with good activity in a pharmacodynamic screening assay in mice. Further investigation, utilizing the type II collagen-induced arthritis model in mice, culminated in the selection of anti-inflammatory development candidate JNJ-28312141 (23, FMS IC(50) = 0.
View Article and Find Full Text PDFTransient receptor potential melastatin 8 (TRPM8) is a nonselective cation channel that is thermoresponsive to cool to cold temperatures (8-28 °C) and also may be activated by chemical agonists such as menthol and icilin. Antagonism of TRPM8 activation is currently under investigation for the treatment of painful conditions related to cold, such as cold allodynia and cold hyperalgesia. The design, synthesis, and optimization of a class of selective TRPM8 antagonists based on a benzimidazole scaffold is described, leading to the identification of compounds that exhibited potent antagonism of TRPM8 in cell-based functional assays for human, rat, and canine TRPM8 channels.
View Article and Find Full Text PDFDuring efforts to improve the bioavailability of FMS kinase inhibitors 1 and 2, a series of saturated and aromatic 4-heterocycles of reduced basicity were prepared and evaluated in an attempt to also improve the cardiovascular safety profile over lead arylamide 1, which possessed ion channel activity. The resultant compounds retained excellent potency and exhibited diminished ion channel activity.
View Article and Find Full Text PDFThere is increasing evidence that tumor-associated macrophages promote the malignancy of some cancers. Colony-stimulating factor-1 (CSF-1) is expressed by many tumors and is a growth factor for macrophages and mediates osteoclast differentiation. Herein, we report the efficacy of a novel orally active CSF-1 receptor (CSF-1R) kinase inhibitor, JNJ-28312141, in proof of concept studies of solid tumor growth and tumor-induced bone erosion.
View Article and Find Full Text PDFAn anti-inflammatory 1,2,4-phenylenetriamine-containing series of FMS inhibitors with a potential to form reactive metabolites was transformed into a series with equivalent potency by incorporation of carbon-based replacement groups. Structure-based modeling provided the framework to efficiently effect this transformation and restore potencies to previous levels. This optimization removed a risk factor for potential idiosyncratic drug reactions.
View Article and Find Full Text PDFA series of 3,4,6-substituted 2-quinolones has been synthesized and evaluated as inhibitors of the kinase domain of macrophage colony-stimulating factor-1 receptor (FMS). The fully optimized compound, 4-(4-ethyl-phenyl)-3-(2-methyl-3H-imidazol-4-yl)-2-quinolone-6-carbonitrile 21b, has an IC(50) of 2.5 nM in an in vitro assay and 5.
View Article and Find Full Text PDFBioorg Med Chem Lett
March 2008
The optimization of the arylamide lead 2 resulted in identification of a highly potent series of 2,4-disubstituted arylamides. Compound 8 (FMS kinase IC(50)=0.0008 microM) served as a proof-of-concept candidate in a collagen-induced model of arthritis in mice.
View Article and Find Full Text PDFActivation of the classical pathway of complement has been implicated in disease states such as hereditary angioedema, ischemia-reperfusion injury and acute transplant rejection. The trypsin-like serine protease C1s represents a pivotal upstream point of control in the classical pathway of complement activation and is therefore likely to be a useful target in the therapeutic intervention of these disease states. A series of thiopheneamidine-based inhibitors of C1s has been optimized to give a 70 nM inhibitor that inhibits the classical pathway of complement activation in vitro.
View Article and Find Full Text PDFA study of the S1 binding of lead 5-methylthiothiophene amidine 3, an inhibitor of urokinase-type plasminogen activator, was undertaken by the introduction of a variety of substituents at the thiophene 5-position. The 5-alkyl substituted and unsubstituted thiophenes were prepared using organolithium chemistry. Heteroatom substituents were introduced at the 5-position using a novel displacement reaction of 5-methylsulfonylthiophenes and the corresponding oxygen or sulfur anions.
View Article and Find Full Text PDFThe serine protease urokinase plasminogen activator (uPA) is thought to play a central role in tumor metastasis and angiogenesis. Molecular modeling studies suggest that 5-thiomethylthiopheneamidine inhibits uPA by binding at the S1 pocket of the active site. Further structure based elaboration of this residue resulted in a novel class of potent and selective inhibitors of uPA.
View Article and Find Full Text PDFThe serine protease urokinase (uPa) has been implicated in the progression of both breast and prostate cancer. Utilizing structure based design, the synthesis of a series of substituted 4-[2-amino-1,3-thiazolyl]-thiophene-2-carboxamidines is described. Further optimization of this series by substitution of the terminal amine yielded urokinase inhibitors with excellent activities.
View Article and Find Full Text PDFExamination of the gastrointestinal (GI) tract has been performed for decades using barium sulfate. Although this agent has many recognized limitations including extreme radiopacity, poor intrinsic affinity for the GI mucosa, and very high density, no alternative contrast agents have emerged which produce comparable or better contrast visualization. In fact, the various techniques of the GI radiologic examination (i.
View Article and Find Full Text PDFThe structure activity relationships of a novel series of non-amide-based thrombin inhibitors are described. Exploration of the P2 and the aryl binding region for this series has identified optimal groups for achieving nanomolar potency. The binding modes of these optimal groups have been confirmed by X-ray structural analysis.
View Article and Find Full Text PDFWe describe a new class of potent, non-amide-based small molecule thrombin inhibitors in which an amidinohydrazone is used as a guanidine bioisostere on a non-peptide scaffold. Compound 4 exhibits nM inhibition of thrombin, is selective for thrombin, and shows 60 and 23% bioavailability in rabbits and dogs, respectively. Crystallographic analysis of 4 bound to thrombin confirmed the amindinohydrazone binding mode.
View Article and Find Full Text PDF