Aims: We investigated the combined effects of pipe materials and disinfection chemicals on bacterial community and its active RNA fraction in water and biofilms in a pilot-scale premise plumbing system.
Methods And Results: The changes in bacterial communities were studied within four pipelines using copper and cross-linked polyethylene (PEX) pipe with chlorine or chloramine disinfection. The total and active bacterial communities and the presence of opportunistic pathogens (Legionella spp.
Fecal contamination of surface water compromises the usability of surface water for drinking water production due to an increase in human health risks. In this study, we collected surface water samples for two years from the Kokemäki River (Finland). The downstream river stretch is used for feeding production of artificial ground water for a major drinking water treatment plant.
View Article and Find Full Text PDFWater Res
January 2024
Many factors, including microbiome structure and activity in the drinking water distribution system (DWDS), affect the colonization potential of opportunistic pathogens. The present study aims to describe the dynamics of active bacterial communities in DWDS and identify the factors that shape the community structures and activity in the selected DWDSs. Large-volume drinking water and hot water, biofilm, and water meter deposit samples were collected from five DWDSs.
View Article and Find Full Text PDFWater Res
February 2023
The emergence and development of next-generation sequencing technologies (NGS) has made the analysis of the water microbiome in drinking water distribution systems (DWDSs) more accessible and opened new perspectives in microbial ecology studies. The current study focused on the characterization of the water microbiome employing a gene- and genome-centric metagenomic approach to five waterworks in Finland with different raw water sources, treatment methods, and disinfectant. The microbial communities exhibit a distribution pattern of a few dominant taxa and a large representation of low-abundance bacterial species.
View Article and Find Full Text PDFDisrupting bacterial quorum sensing (QS) signaling is a promising strategy to combat pathogenic biofilms without the development of antibiotic resistance. Here, we report that food-associated bacteria can interfere with the biofilm formation of a Gram-negative pathogenic bacterium by targeting its AHL (acyl-homoserine lactone) QS system. This was demonstrated by screening metabolic end-products of different lactobacilli and propionibacteria using Gram-negative and biofilm-forming as the QS reporter and our anti-QS microscale screening platform with necessary modifications.
View Article and Find Full Text PDFGroundwater provides much of the world's potable water. Nevertheless, groundwater quality monitoring programmes often rely on a sporadic, slow, and narrowly focused combination of periodic manual sampling and laboratory analyses, such that some water quality deficiencies go undetected, or are detected too late to prevent adverse consequences. In an effort to address this shortcoming, we conducted enhanced monitoring of untreated groundwater quality over 12 months (February 2019-February 2020) in four shallow wells supplying potable water in Finland.
View Article and Find Full Text PDFKnowledge of the decay characteristics of health-related microbes in surface waters is important for modeling the transportation of waterborne pathogens and for assessing their public health risks. Although water temperature and light exposure are major factors determining the decay characteristics of enteric microbes in surface waters, such effects have not been well studied in subarctic surface waters. This study comprehensively evaluated the effect of temperature and light on the decay characteristics of health-related microbes [Escherichia coli, enterococci, microbial source tracking markers (GenBac3 & HF183 assays), coliphages (F-specific and somatic), noroviruses GII and Legionella spp.
View Article and Find Full Text PDFWastewater-based surveillance is a cost-effective concept for monitoring COVID-19 pandemics at a population level. Here, SARS-CoV-2 RNA was monitored from a total of 693 wastewater (WW) influent samples from 28 wastewater treatment plants (WWTP, N = 21-42 samples per WWTP) in Finland from August 2020 to May 2021, covering WW of ca. 3.
View Article and Find Full Text PDFInformation on the co-occurrence of antibiotic resistance genes (ARGs) and metal resistance genes (MRGs) among bacterial communities in drinking water distribution systems (DWDSs) is scarce. This study characterized ARGs and MRGs in five well-maintained DWDSs in Finland. The studied DWDSs had different raw water sources and treatment methods.
View Article and Find Full Text PDFRural communities often rely on groundwater for potable water supply. In this study, untreated groundwater samples from 28 shallow groundwater wells in Finland (<10 m deep and mostly supplying untreated groundwater to <200 users in rural areas) were assessed for physicochemical water quality, stable water isotopes, microbial water quality indicators, host-specific microbial source tracking (MST) markers, and bacterial community composition, activity, and diversity (using amplicon sequencing of the 16S rRNA gene and 16S rRNA). Indications of surface water intrusion were identified in five wells, and these indications were found to be negatively correlated, overall, with bacterial alpha diversity (based on amplicon sequencing of the 16S rRNA gene).
View Article and Find Full Text PDFBacterial biofilms are an important underlying cause for chronic infections. By switching into the biofilm state, bacteria can evade host defenses and withstand antibiotic chemotherapy. Despite the fact that biofilms at clinical and environmental settings are mostly composed of multiple microbial species, biofilm research has largely been focused on single-species biofilms.
View Article and Find Full Text PDFThe complex cell wall and biofilm matrix (ECM) act as key barriers to antibiotics in mycobacteria. Here, the ECM and envelope proteins of Mycobacterium marinum ATCC 927, a nontuberculous mycobacterial model, were monitored over 3 months by label-free proteomics and compared with cell surface proteins on planktonic cells to uncover pathways leading to virulence, tolerance, and persistence. We show that ATCC 927 forms pellicle-type and submerged-type biofilms (PBFs and SBFs, respectively) after 2 weeks and 2 days of growth, respectively, and that the increased CelA1 synthesis in this strain prevents biofilm formation and leads to reduced rifampicin tolerance.
View Article and Find Full Text PDFBacteriophage control of harmful or pathogenic bacteria has aroused growing interest, largely due to the rise of antibiotic resistance. The objective of this study was to test phages as potential agents for the biocontrol of an opportunistic pathogen in water. Two bacteriophages (vB_PaeM_V523 and vB_PaeM_V524) were isolated from wastewater and characterized physically and functionally.
View Article and Find Full Text PDFThe knowledge about the members of active archaea communities in DWDS is limited. The current understanding is based on high-throughput 16S ribosomal RNA gene (DNA-based) amplicon sequencing that reveals the diversity of active, dormant, and dead members of the prokaryote (bacteria, archaea) communities. The sequencing primers optimized for bacteria community analysis may underestimate the share of the archaea community.
View Article and Find Full Text PDFEnviron Microbiome
May 2021
Background: Rivers and lakes are used for multiple purposes such as for drinking water (DW) production, recreation, and as recipients of wastewater from various sources. The deterioration of surface water quality with wastewater is well-known, but less is known about the bacterial community dynamics in the affected surface waters. Understanding the bacterial community characteristics -from the source of contamination, through the watershed to the DW production process-may help safeguard human health and the environment.
View Article and Find Full Text PDFWastewater-based surveillance of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is used to monitor the population-level prevalence of the COVID-19 disease. In many cases, due to lockdowns or analytical delays, the analysis of wastewater samples might only be possible after prolonged storage. In this study, the effect of storage conditions on the RNA copy numbers of the SARS-CoV-2 virus in wastewater influent was studied and compared to the persistence of norovirus over time at 4 °C, -20 °C, and -75 °C using the reverse-transcription quantitative PCR (RT-qPCR) assays E-Sarbeco, N2, and norovirus GII.
View Article and Find Full Text PDFWaterborne disease outbreaks are a persistent and serious threat to public health according to reported incidents across the globe. Online drinking water quality monitoring technologies have evolved substantially and have become more accurate and accessible. However, using online measurements alone is unsuitable for detecting microbial regrowth, potentially including harmful species, ahead of time in the distribution systems.
View Article and Find Full Text PDFThe present study investigated ATCC25923 surfaceomes (cell surface proteins) during prolonged growth by subjecting planktonic and biofilm cultures (initiated from exponential or stationary cells) to label-free quantitative surfaceomics and phenotypic confirmations. The abundance of adhesion, autolytic, hemolytic, and lipolytic proteins decreased over time in both growth modes, while an opposite trend was detected for many tricarboxylic acid (TCA) cycle, reactive oxygen species (ROS) scavenging, Fe-S repair, and peptidolytic moonlighters. In planktonic cells, these changes were accompanied by decreasing and increasing adherence to hydrophobic surface and fibronectin, respectively.
View Article and Find Full Text PDFMedical device-associated staphylococcal infections are a common and challenging problem. However, detailed knowledge of staphylococcal biofilm dynamics on clinically relevant surfaces is still limited. In the present study, biofilm formation of the ATCC 25923 strain was studied on clinically relevant materials-borosilicate glass, plexiglass, hydroxyapatite, titanium and polystyrene-at 18, 42 and 66 h.
View Article and Find Full Text PDFInt J Environ Res Public Health
November 2019
Drinking water outbreaks occur worldwide and may be caused by several factors, including raw water contamination, treatment deficiencies, and distribution network failure. This study describes two drinking water outbreaks in Finland in 2016 (outbreak I) and 2018 (outbreak II). Both outbreaks caused approximately 450 illness cases and were due to drinking water pipe breakage and subsequent wastewater intrusion into the distribution system.
View Article and Find Full Text PDFBackground: Eukaryotes are ubiquitous in natural environments such as soil and freshwater. Little is known of their presence in drinking water distribution systems (DWDSs) or of the environmental conditions that affect their activity and survival.
Methods: Eukaryotes were characterized by Illumina high-throughput sequencing targeting 18S rRNA gene (DNA) that estimates the total community and the 18S rRNA gene transcript (RNA) that is more representative of the active part of the community.
Bacterial biofilms have clear implications in disease and in food applications involving probiotics. Here, we show that switching the carbohydrate source from glucose to fructose increased the biofilm formation and the total surface-antigenicity of a well-known probiotic, GG. Surfaceomes (all cell surface-associated proteins) of GG cells grown with glucose and fructose in planktonic and biofilm cultures were identified and compared, which indicated carbohydrate source-dependent variations, especially during biofilm growth.
View Article and Find Full Text PDFMicrobiological contamination of groundwater supplies causes waterborne outbreaks worldwide. In this study, two waterborne outbreaks related to microbiological contamination of groundwater supplies are described. Analyses of pathogenic human enteric viruses (noroviruses and adenoviruses), fecal bacteria (Campylobacter spp.
View Article and Find Full Text PDFHuman norovirus (NoV) causes waterborne outbreaks worldwide suggesting their ability to persist and survive for extended periods in the environment. The objective of this study was to determine the persistence of the NoV GII genome in drinking water and wastewater at three different temperatures (3 °C, 21 °C, and 36 °C). The persistence of two NoV GII inoculums (extracted from stool) and an indigenous NoV GII were studied.
View Article and Find Full Text PDF