Genomic DNA is replicated by two DNA polymerase molecules, one of which works in close association with the helicase to copy the leading-strand template in a continuous manner while the second copies the already unwound lagging-strand template in a discontinuous manner through the synthesis of Okazaki fragments. Considering that the lagging-strand polymerase has to recycle after the completion of every Okazaki fragment through the slow steps of primer synthesis and hand-off to the polymerase, it is not understood how the two strands are synthesized with the same net rate. Here we show, using the T7 replication proteins, that RNA primers are made 'on the fly' during ongoing DNA synthesis and that the leading-strand T7 replisome does not pause during primer synthesis, contrary to previous reports.
View Article and Find Full Text PDFThe ring-shaped T7 helicase uses the energy of dTTP hydrolysis to perform the mechanical work of translocation and base pair (bp) separation. We have shown that the unwinding rate of T7 helicase decreases with increasing DNA stability. Here, we show that the dTTPase rate also decreases with increasing DNA stability, which indicates close linkage between chemical transition steps and translocation steps of unwinding.
View Article and Find Full Text PDFHelicases are motor enzymes that convert the chemical energy of NTP hydrolysis into mechanical force for motion and nucleic acid strand separation. Within the cell, helicases process a range of nucleic acid sequences. It is not known whether this composite rate of moving and opening the strands of nucleic acids depends on the base sequence.
View Article and Find Full Text PDFBacteriophage T7 helicase (T7 gene 4 helicase-primase) is a prototypical member of the ring-shaped family of helicases, whose structure and biochemical mechanisms have been studied in detail. T7 helicase assembles into a homohexameric ring that binds single-stranded DNA in its central channel. Using RecA-type nucleotide binding and sensing motifs, T7 helicase binds and hydrolyzes several NTPs, among which dTTP supports optimal protein assembly, DNA binding and unwinding activities.
View Article and Find Full Text PDFHelicases are molecular motors that use the energy of nucleoside 5'-triphosphate (NTP) hydrolysis to translocate along a nucleic acid strand and catalyse reactions such as DNA unwinding. The ring-shaped helicase of bacteriophage T7 translocates along single-stranded (ss)DNA at a speed of 130 bases per second; however, T7 helicase slows down nearly tenfold when unwinding the strands of duplex DNA. Here, we report that T7 DNA polymerase, which is unable to catalyse strand displacement DNA synthesis by itself, can increase the unwinding rate to 114 base pairs per second, bringing the helicase up to similar speeds compared to its translocation along ssDNA.
View Article and Find Full Text PDF