Both soluble and membrane-bound enzymes can catalyze the conversion of lipophilic substrates. The precise substrate access path, with regard to phase, has however, until now relied on conjecture from enzyme structural data only (certainly giving credible and valuable hypotheses). Alternative methods have been missing.
View Article and Find Full Text PDFThe photosensitized generation of singlet oxygen within tumor tissues during photodynamic therapy (PDT) is self-limiting, as the already low oxygen concentrations within tumors is further diminished during the process. In certain applications, to minimize photoinduced hypoxia the light is introduced intermittently (fractional PDT) to allow time for the replenishment of cellular oxygen. This condition extends the time required for effective therapy.
View Article and Find Full Text PDFEnhanced spatiotemporal selectivity in photonic sensitization of dissolved molecular oxygen is an important target for improving the potential and the practical applications of photodynamic therapy. Considering the high intracellular glutathione concentrations within cancer cells, a series of BODIPY-based sensitizers that can generate cytotoxic singlet oxygen only after glutathione-mediated cleavage of the electron-sink module were designed and synthesized. Cell culture studies not only validate our design, but also suggest an additional role for the relatively hydrophobic quencher module in the internalization of the photosensitizer.
View Article and Find Full Text PDFAn enhanced chemiluminescence signal is obtained when electronically triggered dioxetane cleavage is initiated by fluoride-mediated deprotection of the silyl-protecting group, followed by self-immolation via 1,4-quinone-methide rearrangement. The reaction takes place even when the probe is trapped within a PMMA layer on top of a glass plate. In that arrangement, fluoride in aqueous solutions can be detected selectively at low micromolar concentrations.
View Article and Find Full Text PDFJudicious design of BODIPY dyes carrying nitroethenyl substituents in conjugation with the BODIPY core yields dyes that respond to biological thiols by both absorbance and emission changes. Incorporation of solubilizing ethyleneglycol units ensures water solubility. The result is bright signaling of biologically relevant thiols in the longer wavelength region of the visible spectrum and in aqueous solutions.
View Article and Find Full Text PDF