Background/aim: Obesity is associated with the structural and functional disorders related to the molecules of the tissues, cells, and membranes. This study aimed to examine the alterations in the secretion of inflammatory cytokines and metabolic factors and structural changes in inguinal (IF) and gonadal (GF) adipose tissues at the molecular level.
Materials And Methods: The IF and GF tissues of Berlin Fat Mouse Inbred (BFMI) lines namely BFMI852, BFMI856, BFMI860, BFMI861 obese and DBAJ control mouse lines were used for mRNA expression and Attenuated Total Reflection - Fourier Transform Infrared Spectroscopy (ATR-FTIR) studies.
αKlotho (Klotho) has well established renoprotective effects; however, the molecular pathways mediating its glomerular protection remain incompletely understood. Recent studies have reported that Klotho is expressed in podocytes and protects glomeruli through auto- and paracrine effects. Here, we examined renal expression of Klotho in detail and explored its protective effects in podocyte-specific Klotho knockout mice, and by overexpressing human Klotho in podocytes and hepatocytes.
View Article and Find Full Text PDFObjective: The loss of forkhead box protein O1 (FoxO1) signaling in response to metabolic stress contributes to the etiology of type II diabetes, causing the dedifferentiation of pancreatic beta cells to a cell type reminiscent of endocrine progenitors. Lack of methods to easily model this process in vitro, however, have hindered progress into the identification of key downstream targets and potential inhibitors. We therefore aimed to establish such an in vitro cellular dedifferentiation model and apply it to identify novel agents involved in the maintenance of beta-cell identity.
View Article and Find Full Text PDFChromatin immunoprecipitation followed by next-generation sequencing (ChIP-seq) has become one of the most popular methods to study protein-DNA interactions and can be used, for instance, to identify the binding sites of transcription factors or to determine the distributions of histones with specific post-translational modifications throughout the genome. Although standard ChIP-seq protocols work well in most experimental systems, there are exceptions, and one of these is the popular model organism Caenorhabditis elegans. Even though this system is very amenable to genetic and cytological methods, biochemical approaches are challenging.
View Article and Find Full Text PDFIn C. elegans, the conserved transcription factor DAF-16/FOXO is a powerful aging regulator, relaying dire conditions into expression of stress resistance and longevity promoting genes. For some of these functions, including low insulin/IGF signaling (IIS), DAF-16 depends on the protein SMK-1/SMEK, but how SMK-1 exerts this role has remained unknown.
View Article and Find Full Text PDFAging strongly influences human morbidity and mortality. Thus, aging-preventive compounds could greatly improve our health and lifespan. Here we screened for such compounds, known as geroprotectors, employing the power of transcriptomics to predict biological age.
View Article and Find Full Text PDFThe ability to perceive and respond to harmful conditions is crucial for the survival of any organism. The transcription factor DAF-16/FOXO is central to these responses, relaying distress signals into the expression of stress resistance and longevity promoting genes. However, its sufficiency in fulfilling this complex task has remained unclear.
View Article and Find Full Text PDFAging is a complex phenomenon, where damage accumulation, increasing deregulation of biological pathways, and loss of cellular homeostasis lead to the decline of organismal functions over time. Interestingly, aging is not entirely a stochastic process and progressing at a constant rate, but it is subject to extensive regulation, in the hands of an elaborate and highly interconnected signaling network. This network can integrate a variety of aging-regulatory stimuli, i.
View Article and Find Full Text PDFThe current study aims to determine lipid profiles in terms of the content and structure of skeletal muscle and adipose tissues to better understand the characteristics of juvenile-onset spontaneous obesity without high fat diet induction. For the purposes of this study, muscle (longissimus, quadriceps) and adipose (inguinal, gonadal) tissues of 10-week-old male DBA/2J and Berlin fat mouse inbred (BFMI) lines (BFMI856, BFMI860, BFMI861) fed with a standard breeding diet were used. Biomolecular structure and composition was determined using attenuated total reflection Fourier transform (ATR FT-IR) spectroscopy, and muscle triglyceride content was further quantified using high-performance liquid chromatography (HPLC) coupled with an evaporative light scattering detector (ELSD).
View Article and Find Full Text PDF