Photodiagnosis Photodyn Ther
March 2023
Background: Antimicrobial photodymanic therapy mediated by methylene blue has been investigated as an adjunctive to periodontal treatment but the dimerization of photosensitizer molecules reduces the phototoxic effects. Sodium dodecyl sulfate is a surfactant that may control this aggregation. The aim of this study was evaluated the photodynamic effect of methylene blue in sodium dodecyl sulfate in periodontitis.
View Article and Find Full Text PDFGingival melanin pigmentation is present in many African and Oriental descendant people and its occurrence in patients may interfere with the absorption and scattering of therapeutic doses of light. Antimicrobial photodynamic therapy (aPDT) is used as an adjunctive treatment for periodontitis and light irradiation may be impaired by tissue size and its melanin content. The aim of this clinical study was to measure the red-light attenuation in gingival tissue naturally pigmented with melanin.
View Article and Find Full Text PDFBackground: Periodontal disease (PD) is a chronic inflammatory disease caused by the presence of microbial biofilm. The aim of this study was to evaluate antimicrobial effect of antimicrobial photodynamic therapy (A-PDT) mediated by methylene blue (MB) in monomer form on A. actinomycetemcomitans and P.
View Article and Find Full Text PDFBackground: Antimicrobial photodynamic therapy (aPDT) has been investigated as an adjunctive to periodontal treatment but the dosimetry parameters adopted have discrepancies and represent a challenge to measure efficacy. There is a need to understand the clinical parameters required to obtain antimicrobial effects by using aPDT in periodontal pockets. The aim of this study was to investigate parameters relating to the antimicrobial effects of photodynamic therapy in periodontal pockets.
View Article and Find Full Text PDFPhotodiagnosis Photodyn Ther
September 2018
Antimicrobial photodynamic therapy (aPDT) has been used to treat periodontal disease, thus the aim of this study was to investigate red light (ʎ = 660 nm) attenuation in gingival tissue. This clinical trial included 30 patients with chronic periodontitis; three incisors from each patient were selected for the experimental procedures. A laser source with a radiant power output of 100 mW was used.
View Article and Find Full Text PDFLocalized surface plasmon resonance (LSPR) of gold nanoparticles has been reported to increase the antimicrobial effect of the photodynamic therapy. Although silver nanoparticles (AgNPs) are an efficient growth inhibitor of microorganisms, no studies exploring LSPR of AgNPs to enhance the photodynamic inactivation (PDI) have been related. In this work, we described the LSPR phenomenon of AgNP sand investigated its interaction with riboflavin, a natural photosensitizer.
View Article and Find Full Text PDFBackground: Dental caries are a multifactorial disease that progressively produces tooth destruction as a result of bacterial colonization of enamel surface, especially Streptococcus mutans. The objective of this work was to investigate the role of glucose in antimicrobial photodynamic therapy (aPDT) on S. mutans.
View Article and Find Full Text PDFCandida albicans biofilm is a main cause of infections associated with medical devices such as catheters, contact lens and artificial joint prosthesis. The current treatment comprises antifungal chemotherapy that presents low success rates. Photodynamic inactivation (PDI) involves the combination of a photosensitizing compound (PS) and light to generate oxidative stress that has demonstrated effective antimicrobial activity against a broad-spectrum of pathogens, including C.
View Article and Find Full Text PDFThe aim of this study was to assess the effectiveness of low intensity laser therapy in patients with Burning Mouth Syndrome (BMS). Thirty BMS subjects were randomized into two groups - Laser (LG) and Placebo (CG). Seven patients dropped out, leaving 13 patients in LG and 10 patients in CG.
View Article and Find Full Text PDFAntimicrobial photodynamic therapy (APDI) has been used to treat localized infection and the aim of this study was to evaluate the effect of APDI combined with fluconazole in suspension of Candida albicans. C. albicans ATCC90028 was subcultured onto Sabouraud agar and inocula were prepared at yeast density of 1×10(6)CFU/mL.
View Article and Find Full Text PDFIn this study, we looked at the possible effects of low-level laser therapy (LLLT) on blood flow velocity, and serotonin (5-HT) and cholinesterase levels in patients with chronic headache associated with temporomandibular disorders (TMD). LLLT has been clinically applied over the past years with positive results in analgesia and without the report of any side effects. The understanding of biological mechanisms of action may improve clinical results and facilitate its indication.
View Article and Find Full Text PDFSemiconductor colloidal quantum dots (QDs) have been applied in biological analysis due to their unique optical properties and their versatility to be conjugated to biomolecules, such as lectins and antibodies, acquiring specificity to label a variety of targets. Concanavalin A (Con A) lectin binds specifically to α-d-mannose and α-d-glucose regions of saccharides that are usually expressed on membranes of mammalian cells and on cell walls of microbials. Candida albicans is the most common fungal opportunistic pathogen present in humans.
View Article and Find Full Text PDFBackground: The purpose of this study was to evaluate the antibacterial effects of photodynamic action of methylene blue (MB) against Aggregatibacter actinomycetemcomitans organized on biofilm.
Methods: After the biofilm growth in 96 flat-bottom well plate, the following groups were used: control group, untreated by either laser or photosensitizer (PS); MB group or dark toxicity group, which was exposed to MB alone (100μM) for 1min (pre-irradiation time); laser group, irradiated with laser for 5min in the absence of PS and three antimicrobial photodynamic inactivation (APDI) groups, with three exposure times of 1, 3 and 5min of irradiation, corresponding to fluences of 15, 45, and 75J/cm(2) respectively. The results were compared to the control group for statistical proposes.
Antimicrobial photodynamic therapy (APDT) may become a useful clinical tool to treat microbial infections, and methylene blue (MB) is a well-known photosensitizer constantly employed in APDT studies, and although MB presents good efficiency in antimicrobial studies, some of the MB photochemical characteristics still have to be evaluated in terms of APDT. This work aimed to evaluate the role of MB solvent's ionic strength regarding dimerization, photochemistry, and photodynamic antimicrobial efficiency. Microbiological survival fraction assays on Escherichia coli were employed to verify the solution's influence on MB antimicrobial activity.
View Article and Find Full Text PDFOpportunistic fungal pathogens may cause an array of superficial infections or serious invasive infections, especially in immunocompromised patients. Cryptococcus neoformans is a pathogen causing cryptococcosis in HIV/AIDS patients, but treatment is limited due to the relative lack of potent antifungal agents. Photodynamic inactivation (PDI) uses the combination of non-toxic dyes called photosensitizers and harmless visible light, which produces singlet oxygen and other reactive oxygen species that produce cell inactivation and death.
View Article and Find Full Text PDFThe objective of this study was to evaluate whether Candida albicans exhibits altered pathogenicity characteristics following sublethal antimicrobial photodynamic inactivation (APDI) and if such alterations are maintained in the daughter cells. C. albicans was exposed to sublethal APDI by using methylene blue (MB) as a photosensitizer (0.
View Article and Find Full Text PDFPseudomonas aeruginosa is considered one of the most important pathogens that represent life-threatening risk in nosocomial environments, mainly in patients with severe burns. Antimicrobial photodynamic therapy (aPDT) has been effective to kill bacteria. The purpose of this study was to develop a burn wound and bloodstream infection model and verify aPDT effects on it.
View Article and Find Full Text PDFIn this study we developed a rat model of incipient caries to investigate the short-term effects of antimicrobial photodynamic therapy (aPDT) on oral microbiota regulation and demineralization arrestment. Twenty-nine male rats were submitted to caries induction. Early carious lesion was confirmed by optical coherence tomography (OCT) 5 days after experiment beginning in five animals.
View Article and Find Full Text PDFObjectives: To investigate whether the major fungal multidrug efflux systems (MESs) affect the efficiency of methylene blue (MB)-mediated antimicrobial photodynamic inactivation (APDI) in pathogenic fungi and test specific inhibitors of these efflux systems to potentiate APDI.
Methods: Candida albicans wild-type and mutants that overexpressed two classes of MESs [ATP-binding cassette (ABC) and major facilitator superfamily (MFS)] were tested for APDI using MB as the photosensitizer with and without addition of MES inhibitors. The uptake and cytoplasm localization of photosensitizer were achieved using laser confocal microscopy.
Objective: The aim of this study was to investigate the effect of low-level laser therapy (LLLT) on the treatment of burning mouth syndrome (BMS). In addition, the laser effect was compared on the different affected oral sites.
Materials And Methods: Eleven subjects with a total of 25 sites (tongue, lower lip, upper lip, and palate) affected by a burning sensation were selected.
Objective: The aim of this study was to investigate the effects of 960 nm diode laser and acidulated phosphate fluoride on calcium solubility of human dental enamel.
Background Data: Interest in diode lasers has grown steadily since its invention due to its inherent advantages and its range of applications. Several other laser types have shown good results in caries prevention; however, there are few studies on dental tissue interactions using diode lasers.
Objective: This in vitro study examines the efficacy of two different dental whitening agents, Opalescence Xtra and Opus White, by analyzing the change in color achieved by the treatment and the temperature increase induced in the pulpal chamber.
Background Data: Bleaching techniques achieved significant advances with the use of coherent or incoherent radiation sources to activate the bleaching chemicals.
Methods: The bleaching agents, containing 35% of hydrogen peroxide, were stimulated with 0.