Publications by authors named "Ilja M Reiter"

Increasing aridity in the Mediterranean region will result in longer and recurrent drought. These changes could strongly modify plant defenses, endangering tree survival. We investigate the response of chemical defenses from central and specialized metabolism in Quercus pubescens Willd.

View Article and Find Full Text PDF

Seedling recruitment is a bottleneck for population dynamics and range shift. The vital rates linked to recruitment by seed are impacted by amplified drought induced by climate change. In the Mediterranean region, autumn and winter seedling emergence and mortality may have strong impact on the overall seedling recruitment.

View Article and Find Full Text PDF

Global change scenarios in the Mediterranean basin predict a precipitation reduction within the coming hundred years. Therefore, increased drought will affect forests both in terms of adaptive ecology and ecosystemic services. However, how vegetation might adapt to drought is poorly understood.

View Article and Find Full Text PDF

Isolation of Arabidopsis mutants that maintain stomata open all night long credits the existence of dedicated regulators for stomatal closure in darkness.

View Article and Find Full Text PDF

The hypothesis was tested that O(3)-induced changes in leaf-level photosynthetic parameters have the capacity of limiting the seasonal photosynthetic carbon gain of adult beech trees. To this end, canopy-level photosynthetic carbon gain and respiratory carbon loss were assessed in European beech (Fagus sylvatica) by using a physiologically based model, integrating environmental and photosynthetic parameters. The latter were derived from leaves at various canopy positions under the ambient O(3) regime, as prevailing at the forest site (control), or under an experimental twice-ambient O(3) regime (elevated O(3)), as released through a free-air canopy O(3) fumigation system.

View Article and Find Full Text PDF

Hydrogen photoproduction by eukaryotic microalgae results from a connection between the photosynthetic electron transport chain and a plastidial hydrogenase. Algal H₂ production is a transitory phenomenon under most natural conditions, often viewed as a safety valve protecting the photosynthetic electron transport chain from overreduction. From the colony screening of an insertion mutant library of the unicellular green alga Chlamydomonas reinhardtii based on the analysis of dark-light chlorophyll fluorescence transients, we isolated a mutant impaired in cyclic electron flow around photosystem I (CEF) due to a defect in the Proton Gradient Regulation Like1 (PGRL1) protein.

View Article and Find Full Text PDF

Carbonic anhydrases (CAs) are Zn-containing metalloenzymes that catalyse the reversible hydration of CO(2). We investigated the alphaCA and betaCA families in Arabidopsis, which contain eight alphaCA (At alphaCA1-8) and six betaCA genes (At betaCA1-6). Analyses of expressed sequence tags (ESTs) from The Arabidopsis Information Resource (TAIR) database indicate that all the betaCA encoding sequences, but only three of the At alphaCA, are expressed.

View Article and Find Full Text PDF

The broad range in plant responses to chronic O(3) exposure compels a search for integrative, underlying principles. One such approach is the unifying theory proposed by Reich (1987), which combines the O(3) response of contrasting physiognomic classes of plants on the basis of their intrinsic leaf diffusive conductance and, hence, capacity for O(3) uptake. Physiognomic classes differ in the proportional decline in photosynthesis and growth when compared on the basis of cumulative O(3) exposure per unit time, but converge when compared on the basis of O(3) uptake per unit time or cumulative O(3) uptake over the entire lifetime of the leaf.

View Article and Find Full Text PDF

The responsiveness of adult beech and spruce trees to chronic O(3) stress was studied at a free-air O(3) exposure experiment in Freising/Germany. Over three growing seasons, gas exchange characteristics, biochemical parameters, macroscopic O(3) injury and the phenology of leaf organs were investigated, along with assessments of branch and stem growth as indications of tree performance. To assess response pattern to chronic O(3) stress in adult forest trees, we introduce a new evaluation approach, which provides a comprehensive, readily accomplishable overview across several tree-internal scaling levels, different canopy regions and growing seasons.

View Article and Find Full Text PDF