Publications by authors named "Iliya Rashkov"

The preparation of core-sheath fibers by electrospinning is a topic of significant interest for producing composite fibers with distinct core and sheath functionalities. Moreover, in core-sheath fibers, low-molecular-weight substances or nanosized inorganic additives can be deposited in a targeted manner within the core or the sheath. Commonly, for obtaining a core-sheath structure, coaxial electrospinning is used.

View Article and Find Full Text PDF

The present study aimed to fabricate innovative fibrous materials with various biological activities from poly(3-hydroxybutyrate), sodium hyaluronate (HA), chitosan (Ch), (MO), (HP) extract, or a combination of both extracts. Electrospinning or electrospinning followed by dip coating and the subsequent formation of a polyelectrolyte complex were the methods used to prepare these materials. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) were applied for investigating the morphology of materials, their thermal characteristics, and their surface chemical composition.

View Article and Find Full Text PDF

Novel fibrous materials with diverse biological properties containing a model drug of the 8-hydroxyquinoline group-5-amino-8-hydroxyquinoline (5A8Q)-were fabricated using a one-pot method by electrospinning poly(vinyl alcohol) (PVA)/carboxymethyl cellulose (CMC)/5A8Q solutions. Experiments were performed to prepare Cu (Fe) complexes of the crosslinked PVA/CMC/5A8Q materials. The formation of complexes was proven by using scanning electron microscopy (SEM), attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy, energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS).

View Article and Find Full Text PDF

Fibrous materials composed of core-sheath fibers from poly(ethylene oxide) (PEO), beeswax (BW) and 5-nitro-8-hydroxyquinoline (NQ) were prepared via the self-organization of PEO and BW during the single-spinneret electrospinning of a homogeneous blend solution of the partners. Additionally, the application of the same approach enabled the preparation of fibrous materials composed of core-double sheath fibers from PEO, poly(L-lactide) (PLA) and NQ or 5-chloro-7-iodo-8-hydroxyquinoline (CQ), as well as from PEO, poly(ε-caprolactone) (PCL) and NQ. The consecutive selective extraction of BW and of the polyester with hexane and tetrahydrofuran, respectively, evidenced that core-double sheath fibers from PEO/polyester/BW/drug consisted of a PEO core, a polyester inner sheath and a BW outer sheath.

View Article and Find Full Text PDF

A new type of fibrous mat based on a cellulose derivative-cellulose acetate (CA) or CA and water-soluble polymers (polyvinylpyrrolidone, PVP or poly(vinyl alcohol), PVA)-loaded with the model drug 5-nitro-8-hydroxyquinoline (5N) was fabricated via electrospinning or electrospinning in conjunction with electrospraying. Scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), Fourier-transform infrared spectroscopy (FTIR), water contact angle measurements and ultraviolet-visible spectroscopy (UV-Vis) were used for the complex characterization of the obtained novel material. The decoration of CA fibers with a water-soluble polymer containing the drug resulted in the facilitation of wetting and fast drug release.

View Article and Find Full Text PDF

Electrospinning was used to create fibrous polylactide (PLA) materials loaded with ( plant extract obtained by supercritical carbon dioxide. Morphological, physico-chemical, mechanical, and biological characteristics of the fibers were studied. According to the SEM results, the diameters of smooth and defect-free fibers fabricated by a one-pot electrospinning method were at micron scale.

View Article and Find Full Text PDF

In the present study, the plant extract ( was successfully loaded in polymer fibrous materials on the basis of a biodegradable polyester-poly(L-lactide) (PLA) and biocompatible polyether-polyethylene glycol (PEG) by applying the electrospinning method. The optimal process conditions for the preparation of hybrid fibrous materials were found. The extract concentration was varied-0, 5 or 10 wt% in respect of the polymer weight, in order to study its influence on the morphology and the physico-chemical properties of the obtained electrospun materials.

View Article and Find Full Text PDF

Innovative fibrous materials from cellulose derivative, cellulose acetate (CA) and water-soluble polyether, polyethylene glycol (PEG) loaded with natural biologically active compounds (BAC), quercetin (QUE) and rutin (RUT), have been successfully fabricated by blend electrospinning and dual electrospinning. Scanning electron microscopy revealed that the mean fiber diameters of all the obtained fibers were in the nanometer range. QUE and RUT incorporated in the fibrous mats were in the amorphous state, as evidenced by the performed differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis.

View Article and Find Full Text PDF

The conventional approach for preparation of core-sheath fibers is coaxial electrospinning. Single-spinneret electrospinning of emulsions is a much less common method to obtain core-sheath fibers. Core-sheath structure may be generated by electrospinning of homogeneous blend solutions; however, reports on such cases are still scarce.

View Article and Find Full Text PDF

The Schiff base derivative (Ch-8Q) of chitosan (Ch) and 8-hydroxyquinoline-2-carboxaldehyde (8QCHO) was prepared and fibrous mats were obtained by the electrospinning of Ch-8Q/polylactide (PLA) blend solutions in trifluoroacetic acid (TFA). Complexes of the mats were prepared by immersing them in a solution of CuCl or FeCl. Electron paramagnetic resonance (EPR) analysis was performed to examine the complexation of Cu(Fe) in the Ch-8Q/PLA mats complexes.

View Article and Find Full Text PDF
Article Synopsis
  • The synthesis of polymer prodrug structures using natural compounds, like curcumin, shows potential in cancer prevention and detection.
  • Curcumin was modified with poly(ethylene glycol) to create a water-soluble product (PEG-Curc), and its properties were characterized using various spectroscopy methods.
  • Biological tests revealed that PEG-Curc retains strong anticancer and antimicrobial activities, suggesting it could lead to more advanced clinical applications.
View Article and Find Full Text PDF

In recent years, there has been special interest in innovative technologies such as polymer melt or solution electrospinning, electrospraying, centrifugal electrospinning, coaxial electrospinning, and others. Applying these electrokinetic methods, micro- or nanofibrous materials with high specific surface area, high porosity, and various designs for diverse applications could be created. By using these techniques it is possible to obtain fibrous materials from both synthetic and natural biocompatible and biodegradable polymers, harmless to the environment.

View Article and Find Full Text PDF

Fungi constitute the largest number of plant pathogens and are responsible for a range of serious plant diseases. () and () are the main fungal pathogens causing esca disease in grapevines. On the other hand, there are beneficial microorganisms such as spp.

View Article and Find Full Text PDF

Composite fibrous materials are prepared from poly(ethylene oxide) (PEO) and beeswax (BW) by single-spinneret electrospinning using chloroform as a common solvent. The obtained fibers have core-sheath-like structure, as evidenced by the water contact angle values and corroborated by the results on the elemental composition of the fiber's surface determined by X-ray photoelectron spectroscopy (XPS) and by analyses with scanning electron microscopy of fibers before and after selective extraction of PEO or BW. Furthermore, the core-sheath-like structure is proven by transmission electron microscopy.

View Article and Find Full Text PDF

Esca is a grapevine disease known for centuries which pertains to the group of so-called vine trunk diseases. and are the two main fungal pathogens associated with esca. Novel fibrous materials with antifungal properties based on poly(3-hydroxybutyrate) (PHB), polyvinylpyrrolidone (PVP) and 5-chloro-7-iodo-8-hydroxyquinoline (clioquinol, CQ) were developed.

View Article and Find Full Text PDF

Electrospinning was successfully used for the one-step fabrication of poly(methyl methacrylate) (PMMA) fibers loaded with an inorganic photocatalyst-titanium oxide (TiO). By tuning the PMMA/TiO ratio and the electrospinning conditions (applied voltage, needle tip-to-collector distance, and flow rates), PMMA/TiO composites with selected organic/inorganic ratios, tailored designs, and targeted properties were obtained. The morphology of the electrospun composites was affected by the amount of TiO incorporated into the PMMA fibers.

View Article and Find Full Text PDF

Nowadays, diseases in plants are a worldwide problem. Fungi represent the largest number of plant pathogens and are responsible for a range of serious plant diseases. Esca is a grapevine disease caused mainly by fungal pathogens () and ().

View Article and Find Full Text PDF

Novel poly(vinyl alcohol) (PVA)/chitosan (Ch)-based fibrous materials containing an ionizable model drug, 8-hydroxyquinoline-5-sulfonic acid (SQ), were successfully fabricated by electrospinning. Complexes between the components of the crosslinked PVA/Ch/SQ mats and Cu and Fe ions were formed. The coordination of these ions in the mats was examined by electron paramagnetic resonance spectroscopy (EPR).

View Article and Find Full Text PDF

Novel eco-friendly fibrous materials with complex activities from cellulose acetate and cellulose acetate/polyethylene glycol (CA,PEG) containing 5-chloro-8-hydroxyquinoline as a model drug were obtained by electrospinning. Several methods, including scanning electron microscopy, X-ray diffraction analysis, ultraviolet-visible spectroscopy, water contact angle measurements, and mechanical tests, were utilized to characterize the obtained materials. The incorporation of PEG into the fibers facilitated the drug release.

View Article and Find Full Text PDF

Novel fibrous materials from polylactide (PLA) and Schiff base from Jeffamine ED® and 8-hydroxyquinoline-2-carboxaldehyde (Jeff-8Q) or its complex with Cu (Jeff-8Q.Cu) were successfully prepared by using one-pot electrospinning or electrospinning combined with dip-coating. These approaches enabled the fabrication of materials of diverse design: non-woven textile in which Jeff-8Q or Jeff-8Q.

View Article and Find Full Text PDF

Esca is a type of grapevine trunk disease that severely affects vine yield and longevity. () is one of the main fungi associated with esca. The aim of the present study was to obtain eco-friendly materials with potential antifungal activity against based on biodegradable and biocompatible poly(3-hydroxybutyrate) (PHB), nanosized TiO-anatase (nanoTiO), and chitosan oligomers (COS) by conjunction of electrospinning and electrospraying.

View Article and Find Full Text PDF

Berberine chloride (Brb) is a natural isoquinoline quaternary alkaloid that displayed a set of beneficial biological properties such as antioxidant, antimicrobial, antitumor, anti-inflammatory, and antiviral. Brb is poorly soluble in water and body fluids and its intestinal absorption is very low, which predetermine its low bioavailability. Polymeric nanoparticles seem to be a good platform to overcome these drawbacks.

View Article and Find Full Text PDF

Two-component fibrous materials based on poly(3-hydroxybutyrate) (PHB, T = 160 °C) and poly(ε-caprolactone) (PCL, T = 60 °C) were successfully fabricated by dual-jet electrospinning of their separate spinning solutions. The desired alignment of the fibers that compose PHB/PCL mats was achieved by using three types of rotating collectors-drum (smooth), blade and grid. Additional fiber alignment in the direction of collector rotation was achieved by rotating at 2200 rpm.

View Article and Find Full Text PDF

The aim of present study was to obtain novel fibrous materials based on cellulose derivative and polyethylene glycol loaded with natural biologically active compound quercetin by electrospinning. Several methods including scanning electron microscopy (SEM), IR spectroscopy, X-ray diffraction analysis (XRD), water contact angle measurements, differential scanning calorimetry (DSC), and UV-VIS spectroscopy were utilized to characterize the obtained materials. The incorporation of polyethylene glycol in the fibrous material resulted in increased hydrophilicity and burst release of quercetin from the fibers.

View Article and Find Full Text PDF

Esca is one of the earliest described diseases in grapevines and causes trunk damage and the sudden wilting of the entire plant; it is caused mainly by the species () and (). In practice, there are no known curative approaches for fighting esca directly, which is a huge problem for preserving vineyards. Micro- and nanofibrous membranes from cellulose acetate (CA) and cellulose acetate/polyethylene glycol (CA/PEG) containing 5-chloro-8-hydroxyquinolinol (5-Cl8Q) were successfully prepared by electrospinning.

View Article and Find Full Text PDF