During the past years, the synthesis of polymer prodrug structures, based on natural phytochemical compounds with a great range of valuable biological properties, has become a promising solution in cancer prevention, imaging, and detection. Curcumin (Curc) remains one of the most studied natural products, due to the impressive palette of biological properties and the possibility to be easily loaded in various micro- and nanostructures and chemically modified. In this study, pegylated curcumin derivatives were prepared by a direct esterification reaction between poly(ethylene glycol)diacid (PEG of 600 g/mol molar mass, PEG) and Curc in the presence of ,'-dicyclohexylcarbodiimide (PEG-Curc).
View Article and Find Full Text PDFNovel fibrous materials from cellulose acetate (CA) and polyvinylpyrrolidone (PVP) containing curcumin (Curc) with original design were prepared by one-pot electrospinning or dual spinneret electrospinning. The electrospun materials were characterized by scanning electron microscopy (SEM), fluorescence microscopy, Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-Vis), differential scanning calorimetry (DSC), water contact angle measurements, and microbiological tests. It was found that the incorporation of Curc into the CA and PVP solutions resulted in an increase of the solution viscosity and obtaining fibers with larger diameters (ca.
View Article and Find Full Text PDFNanofibrous materials containing the antitumor drug doxorubicin hydrochloride (DOX) were easily prepared using a one-step method by electrospinning of DOX/poly(L-lactide-co-D,L-lactide) (coPLA) and DOX/quaternized chitosan (QCh)/coPLA solutions. The pristine and DOX-containing mats were characterized by ATR-FTIR and X-ray photoelectron spectroscopy (XPS). The release rate of DOX from the prepared fibers increased with the increase in DOX content.
View Article and Find Full Text PDF