Publications by authors named "Ilit Cohen-Ofri"

Tefillin are Jewish ritual artifacts consisting of leather cases, containing inscribed slips, which are affixed with leather straps to the body of the tefillin practitioner. According to current Jewish ritual law, the tefillin cases and straps are to be colored black. The present study examines seventeen ancient tefillin cases discovered among the Dead Sea Scrolls in caves in the Judean Desert.

View Article and Find Full Text PDF

It is well established that the ink pigment used for writing the Dead Sea Scrolls (DSS) is mainly composed of carbon soot. The ink's binder however has yet to be securely identified. By applying EVA (ethylene vinyl acetate containing strong anion and cation exchangers admixed with C and C) diskettes on one fragment and analyzing the captured material, the following study was able to determine the composition of the binder.

View Article and Find Full Text PDF

Photosynthetic organisms utilize interacting pairs of chlorophylls and bacteriochlorophylls as excitation energy donors and acceptors in light harvesting complexes, as photosensitizers of charge separation in reaction centers, and maybe as photoprotective quenching centers that dissipate excess excitation energy under high light intensities. To better understand how the pigment's local environment and spatial organization within the protein tune its ground- and excited-state properties to perform different functions, we prepared and characterized the simplest possible system of interacting bacteriochlorophylls within a protein scaffold. Using HP7, a high-affinity heme-binding protein of the HP class of de novo designed four-helix bundles, we incorporated 13(2)-OH-zinc-bacteriochlorophyllide-a (ZnBChlide), a water-soluble bacteriochlorophyll derivative, into specific binding sites within the four-helix bundle protein core.

View Article and Find Full Text PDF

Charcoal produced in natural fires is widespread, but surprisingly little is known about its structure and stability. TEM and electron energy loss spectroscopy (EELS) were used to characterize the organized graphite-like microcrystallites and amorphous nonorganized phases of modern charcoal that had been produced in natural fires. In addition, a semiordered structure was identified in two modern charcoal samples.

View Article and Find Full Text PDF