Publications by authors named "Ilina Iordanova"

Progenitor cells in the central nervous system must leave the cell cycle to become neurons and glia, but the signals that coordinate this transition remain largely unknown. We previously found that Wnt signaling, acting through Sox2, promotes neural competence in the Xenopus retina by activating proneural gene expression. We now report that Wnt and Sox2 inhibit neural differentiation through Notch activation.

View Article and Find Full Text PDF

Progenitors in the developing central nervous system acquire neural potential and proliferate to expand the pool of precursors competent to undergo neuronal differentiation. The formation and maintenance of neural-competent precursors are regulated by SoxB1 transcription factors, and evidence that their expression is regionally regulated suggests that specific signals regulate neural potential in subdomains of the developing nervous system. We show that the frizzled (Fz) transmembrane receptor Xfz5 selectively governs neural potential in the developing Xenopus retina by regulating the expression of Sox2.

View Article and Find Full Text PDF

The conversion of the normal cellular prion protein to an abnormal isoform is considered to be causal to the prion diseases or transmissible spongiform encephalopathies. The prion protein is a copper binding protein but under some conditions may bind other metals. In particular, the binding of manganese has been suggested to convert the prion protein (PrP) to a protease resistant isoform.

View Article and Find Full Text PDF