Publications by authors named "Ilin I"

The use of computer simulation methods has become an indispensable component in identifying drugs against the SARS-CoV-2 coronavirus. There is a huge body of literature on application of molecular modelling to predict inhibitors against target proteins of SARS-CoV-2. To keep our review clear and readable, we limited ourselves primarily to works that use computational methods to find inhibitors and test the predicted compounds experimentally either in target protein assays or in cell culture with live SARS-CoV-2.

View Article and Find Full Text PDF

Cardiovascular diseases caused by blood coagulation system disorders are one of the leading causes of morbidity and mortality in the world. Research shows that blood clotting factors are involved in these thrombotic processes. Among them, factor Xa occupies a key position in the blood coagulation cascade.

View Article and Find Full Text PDF

Fibrinolysis is the process of the fibrin-platelet clot dissolution initiated after bleeding has been stopped. It is regulated by a cascade of proteolytic enzymes with plasmin at its core. In pathological cases, the balance of normal clot formation and dissolution is replaced by a too rapid lysis, leading to bleeding, or an insufficient one, leading to an increased thrombotic risk.

View Article and Find Full Text PDF

Despite extensive research in the field of thrombotic diseases, the prevention of blood clots remains an important area of study. Therefore, the development of new anticoagulant drugs with better therapeutic profiles and fewer side effects to combat thrombus formation is still needed. Herein, we report the synthesis and evaluation of novel pyrroloquinolinedione-based rhodanine derivatives, which were chosen from 24 developed derivatives by docking as potential molecules to inhibit the clotting factors Xa and XIa.

View Article and Find Full Text PDF

Antithrombotic agents based on factor XIIa inhibitors can become a new class of drugs to manage conditions associated with thrombosis. Herein, we report identification of two novel classes of factor XIIa inhibitors. The first one is triazolopyrimidine derivatives designed on the basis of the literature aminotriazole hit and identified using virtual screening of the focused library.

View Article and Find Full Text PDF

Candidates to being inhibitors of the main protease (Mpro) of SARS-CoV-2 were selected from the database of Voronezh State University using molecular modeling. The database contained approximately 19,000 compounds represented by more than 41,000 ligand conformers. These ligands were docked into Mpro using the SOL docking program.

View Article and Find Full Text PDF

The COVID-19 pandemic is still affecting many people worldwide and causing a heavy burden to global health. To eliminate the disease, SARS-CoV-2, the virus responsible for the pandemic, can be targeted in several ways. One of them is to inhibit the 2'--methyltransferase (nsp16) enzyme that is crucial for effective translation of viral RNA and virus replication.

View Article and Find Full Text PDF

In the modern world, complications caused by disorders in the blood coagulation system are found in almost all areas of medicine. Thus, the development of new, more advanced drugs that can prevent pathological conditions without disrupting normal hemostasis is an urgent task. The blood coagulation factor XIIa is one of the most promising therapeutic targets for the development of anticoagulants based on its inhibitors.

View Article and Find Full Text PDF

The quantum quasi-docking procedure is used to compare the docking accuracies of two quantum-chemical semiempirical methods, namely, PM6-D3H4X and PM7. Quantum quasi-docking is an approximation to quantum docking. In quantum docking, it is necessary to search directly for the global minimum of the energy of the protein-ligand complex calculated by the quantum-chemical method.

View Article and Find Full Text PDF

Docking and quantum-chemical methods have been used for screening of drug-like compounds from the own database of the Voronezh State University to find inhibitors the SARS-CoV-2 main protease, an important enzyme of the coronavirus responsible for the COVID-19 pandemic. Using the SOL program more than 42000 3D molecular structures were docked into the active site of the main protease, and more than 1000 ligands with most negative values of the SOL score were selected for further processing. For all these top ligands, the protein-ligand binding enthalpy has been calculated using the PM7 semiempirical quantum-chemical method with the COSMO implicit solvent model.

View Article and Find Full Text PDF

Docking is in demand for the rational computer aided structure based drug design. A review of docking methods and programs is presented. Different types of docking programs are described.

View Article and Find Full Text PDF

Coagulation factor Xa and factor XIa are proven to be convenient and crucial protein targets for treatment for thrombotic disorders and thereby their inhibitors can serve as effective anticoagulant drugs. In the present work, we focused on the structure-activity relationships of derivatives of pyrrolo[3,2,1-]quinolin-2(1)-one and an evaluation of their activity against factor Xa and factor XIa. For this, docking-guided synthesis of nine compounds based on pyrrolo[3,2,1-]quinolin-2(1)-one was carried out.

View Article and Find Full Text PDF

Docking represents one of the most popular computational approaches in drug design. It has reached popularity owing to capability of identifying correct conformations of a ligand within an active site of the target-protein and of estimating the binding affinity of a ligand that is immensely helpful in prediction of compound activity. Despite many success stories, there are challenges, in particular, handling with a large number of degrees of freedom in solving the docking problem.

View Article and Find Full Text PDF

Eating mushrooms known to contain amatoxin is fraught with serious complications. The analysis of the relevant literature publications revealed no article with the description of the histological picture of the internal organs in the subjects intoxicated with amatoxin. It is known, however, that such poisoning is associated with the severe irreversible injuries to all intracellular protein structures the character of which depends on time.

View Article and Find Full Text PDF

The paper presents the results concerning the application of docking programs FLM to combined use of the MMFF94 force field and the semiempirical quantum-chemical method PM7 in the docking procedure. At the first step of this procedure a fairly wide range of low-energy minima of the protein-ligand complex is found in the frame of the MMFF94 force field using the FLM program. The energies of all these minima are recalculated using the PM7 method and the COSMO solvent continuum model at the second step.

View Article and Find Full Text PDF

Factor Xa is a serine protease representing a crucial element in the coagulation process and an attractive target for anticoagulant therapy. At the present time there are several chemical classes of factor Xa inhibitors with proven activity. Furthermore, three factor Xa inhibitors have been approved for the medical use to date.

View Article and Find Full Text PDF

Discovery of new inhibitors of the protein associated with a given disease is the initial and most important stage of the whole process of the rational development of new pharmaceutical substances. New inhibitors block the active site of the target protein and the disease is cured. Computer-aided molecular modeling can considerably increase effectiveness of new inhibitors development.

View Article and Find Full Text PDF

The structural protein (Gag) of the gypsy Drosophila retrovirus lacks matrix, but contains capsid and nucleocapsid domains. The Gag forms virus-like particles in a bacterial cell; besides, its capsid alone is able to form aggregates. However, aggregates assembled from the capsid were variable in size and displayed much less organization than particles formed by the whole Gag.

View Article and Find Full Text PDF

The amino acid sequence of the drosophila retrovirus MDG4 (gypsy) structural protein Gag does not contain a canonical motif known for the majority of vertebrate retroviruses. Moreover, the protein translation can theoretically begin with two separated initiation codons located within its unique open reading frame. We designed constructs for expression of two theoretically possible variants of Gag polypeptide and investigated an ability of the each product to form virus-like particles in the bacterial cell, i.

View Article and Find Full Text PDF

An Escherichia coli model system was developed to estimate the capacity of the integrase of the Drosophila melanogaster retrotransposon gypsy (mdg4) for precise excision of the long terminal repeat (LTR) and, hence, the entire gypsy. The gypsy retrotransposon was cloned in the form of a PCR fragment in the pBlueScript II KS+ (pBSLTR) vector, and the region of the second open reading frame (INT ORF2) of this element encoding integrase was cloned under the lacZ promoter in the pUC19 vector and then recloned in pACYC184 compatible with pBSLTR. The LTR was cloned in such a manner that its precise excision from the recombinant plasmid led to the restoration of the nucleotide sequence and the function of the ORF of the lacZ gene contained in the vector; therefore, it was detected by the appearance of blue colonies on a medium containing X-gal upon IPTG induction.

View Article and Find Full Text PDF

Current views of retrotransposons possessing long terminal repeats (LTRs) are described. The existing classification and element types isolated by genome organization are considered. Experimental data are summarized to demonstrate that the replicative cycle of a retrotransposon is not restricted to a single cell and that LTR retrotransposons are transferred between somatic cells with a rate comparable with the element transposition rate within the genome of one cell.

View Article and Find Full Text PDF

A search for noncanonical variants of the gypsy retrotransposon (MDG4) in the genome of the Drosophila melanogaster strain G32 led to the cloning of four copies of the poorly studied 7411-bp gtwin element. Sequence analysis showed that gtwin belongs to a family of endogeneous retroviruses, which are widespread in the Drosophila genome and have recently been termed insect erantiviruses. The gtwin retrotransposon is evolutionarily closest to MDG4, as evident from a good alignment of their nucleotide sequences including ORF1 (the pol gene) and ORF3 (the env gene), as well as the amino acid sequences of their protein products.

View Article and Find Full Text PDF