Publications by authors named "Ilias Kalafatakis"

Article Synopsis
  • DNA damage in macrophages with a specific DNA repair defect leads to neuroinflammation and neuron death in mouse models.
  • Accumulation of double-stranded DNAs in microglia triggers a viral-like immune response, causing further damage in the aged brain.
  • Delivering a targeted enzyme via extracellular vesicles effectively removes harmful DNAs, reduces inflammation, and slows down neurodegenerative symptoms in mice, suggesting a new treatment strategy.
View Article and Find Full Text PDF

Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS) that causes progressive neurological disability in most patients due to neurodegeneration. Activated immune cells infiltrate the CNS, triggering an inflammatory cascade that leads to demyelination and axonal injury. Non-inflammatory mechanisms are also involved in axonal degeneration, although they are not fully elucidated yet.

View Article and Find Full Text PDF

Oligodendrocytes, the myelin-making cells of the CNS, regulate the complex process of myelination under physiological and pathological conditions, significantly aided by other glial cell types such as microglia, the brain-resident, macrophage-like innate immune cells. In this review, we summarize how oligodendrocytes orchestrate myelination, and especially myelin repair after damage, and present novel aspects of oligodendroglial functions. We emphasize the contribution of microglia in the generation and regeneration of myelin by discussing their beneficial and detrimental roles, especially in remyelination, underlining the cellular and molecular components involved.

View Article and Find Full Text PDF

BNN20, a C17-spiroepoxy derivative of the neurosteroid dehydroepiandrosterone, has been shown to exhibit strong neuroprotective properties but its role in glial populations has not been assessed. Our aim was to investigate the effect of BNN20 on glial populations by using in vitro and in vivo approaches, taking advantage of the well-established lysophosphatidylcholine (LPC)-induced focal demyelination mouse model. Our in vivo studies, performed in male mice, showed that BNN20 treatment leads to an increased number of mature oligodendrocytes (OLs) in this model.

View Article and Find Full Text PDF

Demyelinating pathologies comprise of a variety of conditions where either central or peripheral myelin is attacked, resulting in white matter lesions and neurodegeneration. Myelinated axons are organized into molecularly distinct domains, and this segregation is crucial for their proper function. These defined domains are differentially affected at the different stages of demyelination as well as at the lesion and perilesion sites.

View Article and Find Full Text PDF

The anatomic gene expression atlas (AGEA) of the adult mouse brain of the Allen Institute for Brain Science is a transcriptome-based atlas of the adult C57Bl/6 J mouse brain, based on the extensive in situ hybridization dataset of the Institute. This spatial mapping of the gene expression levels of mice under baseline conditions could assist in the formation of new, reasonable transcriptome-derived hypotheses on brain structure and underlying biochemistry, which could also have functional implications. The aim of this work is to use the data of the AGEA (in combination with Tabula Muris, a compendium of single cell transcriptome data collected from mice, enabling direct and controlled comparison of gene expression among cell types) to provide further insights into the physiology of TAG-1/Contactin-2 and its interactions, by presenting the expression of the corresponding gene across the adult mouse brain under baseline conditions and to investigate any spatial genomic correlations between TAG-1/Contactin-2 and its interacting proteins and markers of mature and immature oligodendrocytes, based on the pre-existing experimental or bibliographical evidence.

View Article and Find Full Text PDF

Despite the progress in the development of hemostatic products, efficient treatment solutions to control hemorrhage upon wounding are still necessary. Chitosan (CS) is a natural hydrogel-forming polysaccharide, easy to modify for specific applications. Inorganic compounds in turn possess documented hemostatic properties.

View Article and Find Full Text PDF

The oligodendrocyte maturation process and the transition from the pre-myelinating to the myelinating state are extremely important during development and in pathology. In the present study, we have investigated the role of the cell adhesion molecule CNTN2/TAG-1 on oligodendrocyte proliferation, differentiation, myelination, and function during development and under pathological conditions. With the combination of in vivo, in vitro, ultrastructural, and electrophysiological methods, we have mapped the expression of CNTN2 protein in the oligodendrocyte lineage during the different stages of myelination and its involvement on oligodendrocyte maturation, branching, myelin-gene expression, myelination, and axonal function.

View Article and Find Full Text PDF