Publications by authors named "Ilia Sucholutsky"

Scientific discoveries often hinge on synthesizing decades of research, a task that potentially outstrips human information processing capacities. Large language models (LLMs) offer a solution. LLMs trained on the vast scientific literature could potentially integrate noisy yet interrelated findings to forecast novel results better than human experts.

View Article and Find Full Text PDF

What do we want from machine intelligence? We envision machines that are not just tools for thought but partners in thought: reasonable, insightful, knowledgeable, reliable and trustworthy systems that think with us. Current artificial intelligence systems satisfy some of these criteria, some of the time. In this Perspective, we show how the science of collaborative cognition can be put to work to engineer systems that really can be called 'thought partners', systems built to meet our expectations and complement our limitations.

View Article and Find Full Text PDF

Determining the extent to which the perceptual world can be recovered from language is a longstanding problem in philosophy and cognitive science. We show that state-of-the-art large language models can unlock new insights into this problem by providing a lower bound on the amount of perceptual information that can be extracted from language. Specifically, we elicit pairwise similarity judgments from GPT models across six psychophysical datasets.

View Article and Find Full Text PDF
Article Synopsis
  • The research investigates the use of GPT models for automated psychological text analysis across 15 datasets consisting of nearly 48,000 annotated tweets and news headlines in 12 languages.
  • Results indicate that GPT outperformed traditional English-language dictionary analysis and sometimes matched or exceeded the performance of advanced machine learning models, particularly benefiting lesser-spoken languages.
  • The study suggests that GPT simplifies and democratizes automated text analysis, making it more accessible for researchers with little coding experience, and encourages further research in understudied languages.
View Article and Find Full Text PDF

Background: Pathology reports contain key information about the patient's diagnosis as well as important gross and microscopic findings. These information-rich clinical reports offer an invaluable resource for clinical studies, but data extraction and analysis from such unstructured texts is often manual and tedious. While neural information retrieval systems (typically implemented as deep learning methods for natural language processing) are automatic and flexible, they typically require a large domain-specific text corpus for training, making them infeasible for many medical subdomains.

View Article and Find Full Text PDF

Using prototype methods to reduce the size of training datasets can drastically reduce the computational cost of classification with instance-based learning algorithms like the k-Nearest Neighbour classifier. The number and distribution of prototypes required for the classifier to match its original performance is intimately related to the geometry of the training data. As a result, it is often difficult to find the optimal prototypes for a given dataset, and heuristic algorithms are used instead.

View Article and Find Full Text PDF

In most areas of machine learning, it is assumed that data quality is fairly consistent between training and inference. Unfortunately, in real systems, data are plagued by noise, loss, and various other quality reducing factors. While a number of deep learning algorithms solve end-stage problems of prediction and classification, very few aim to solve the intermediate problems of data pre-processing, cleaning, and restoration.

View Article and Find Full Text PDF