Publications by authors named "Ilia Rasskazov"

Cutting-edge photonic devices frequently rely on microparticle components to focus and manipulate light. Conventional methods used to produce these microparticle components frequently offer limited control of their structural properties or require low-throughput nanofabrication of more complex structures. Here, we employ a synthetic biology approach to produce environmentally friendly, living microlenses with tunable structural properties.

View Article and Find Full Text PDF

Nano- and microparticles are popular media to enhance optical signals, including fluorescence from a dye proximal to the particle. Here we show that homogeneous, lossless, all-dielectric spheres with diameters in the mesoscale range, between nano- (≲100 nm) and micro- (≳1 μm) scales, can offer surprisingly large fluorescence enhancements, up to ∼ 10. With the absence of nonradiative Ohmic losses inherent to plasmonic particles, we show that can increase, decrease or even stay the same with increasing intrinsic quantum yield , for suppressed, enhanced or intact radiative decay rates of a fluorophore, respectively.

View Article and Find Full Text PDF

We show that in metal-dielectric core-shell nanoparticles, unusually thick dielectric coatings can produce extreme fluorescence enhancement with an enhancement factor ≳ 3000 for emitters located on the surface or in the interior of the shell of Au@dielectric spherical particles under realistic conditions, even for the emitters with 100% intrinsic quantum yield. Thick dielectric coatings facilitate high-quality transverse electric (TE) multipole ( = 7) resonances which are shown as the major cause for the reported extraordinary values of .

View Article and Find Full Text PDF

A potential control over the position of maxima of scattering and absorption cross sections can be exploited to better tailor nanoparticles for specific light-matter interaction applications. Here we explain in detail the mechanism of an appreciable blue shift of the absorption cross-section peak relative to a metal spherical particle localized surface plasmon resonance (LSPR) defined as the maximum of the extinction (and scattering) cross section. Such a branching of cross sections' maxima requires a certain threshold value of size parameter (≈0.

View Article and Find Full Text PDF

Using the extended discrete interaction model and Mie theory, we investigate the tunability of the optical polarizability of small metallic nano-shells. We show that the spectral positions of symmetric and antisymmetric dipolar plasmon resonances vary with the ratio of particle radius to hole radius in a manner similar to one predicted for uniform metallic nano-shells using a semiclassical approach of two coupled harmonic oscillators. We show that, according to the extended discrete interaction model, the dipolar plasmon resonances are also present for nano-shells in the 2-13 nm size region and show the same functional dependence seen for larger nano-shells.

View Article and Find Full Text PDF

We obtain exact analytic expressions for (i) the electromagnetic energy radial density within and outside a multilayered sphere and (ii) the total electromagnetic energy stored within its core and each of its shells. Explicit expressions for the special cases of lossless core and shell are also provided. The general solution is based on the compact recursive transfer-matrix method, and its validity includes also magnetic media.

View Article and Find Full Text PDF

Optical scattering corrections are invoked to computationally distinguish between scattering and absorption contributions to recorded data in infrared (IR) microscopy, with a goal to obtain an absorption spectrum that is relatively free of the effects of sample morphology. Here, we present a modification of the extended multiplicative signal correction (EMSC) approach that allows for spectral recovery from fibers and cylindrical domains in heterogeneous samples. The developed theoretical approach is based on exact Mie theory for infinite cylinders.

View Article and Find Full Text PDF

Understanding the infrared (IR) spectral response of materials as a function of their morphology is not only of fundamental importance but also of contemporary practical need in the analysis of biological and synthetic materials. While significant work has recently been reported in understanding the spectra of particles with well-defined geometries, we report here on samples that consist of collections of particles. First, we theoretically model the importance of multiple scattering effects and computationally predict the impact of local particles' environment on the recorded IR spectra.

View Article and Find Full Text PDF

We consider propagation of surface plasmon polaritons in linear chains of equidistant metallic nanospheroids. We show that, for suitably chosen parameters, the propagation is free of spatial decay in spite of the full account of absorptive losses in the metal.

View Article and Find Full Text PDF