Infrared photothermal heterodyne imaging (IR-PHI) is an all-optical table top approach that enables super-resolution mid-infrared microscopy and spectroscopy. The underlying principle behind IR-PHI is the detection of photothermal changes to specimens induced by their absorption of infrared radiation. Because detection of resulting refractive index and scattering cross section changes is done using a visible (probe) laser, IR-PHI exhibits a spatial resolution of ∼300 nm.
View Article and Find Full Text PDFA key challenge for addressing micro- and nanoplastics (MNPs) in the environment is being able to characterize their chemical properties, morphologies, and quantities in complex matrices. Current techniques, such as Fourier transform infrared spectroscopy, provide these broad characterizations but are unsuitable for studying MNPs in spectrally congested or complex chemical environments. Here, we introduce a new, super-resolution infrared absorption technique to characterize MNPs, called infrared photothermal heterodyne imaging (IR-PHI).
View Article and Find Full Text PDFAccurate measurements of semiconductor nanocrystal (NC) emission quantum yields (QYs) are critical to condensed phase optical refrigeration. Of particular relevance to measuring NC QYs is a longstanding debate as to whether an excitation energy-dependent (EED) QY exists. Various reports indicate existence of NC EED QYs, suggesting that the phenomenon is linked to specific ensemble properties.
View Article and Find Full Text PDFPhys Chem Chem Phys
February 2020
This perspective highlights recent advances in super-resolution, mid-infrared imaging and spectroscopy. It provides an overview of the different near field microscopy techniques developed to address the problem of chemically imaging specimens in the mid-infrared "fingerprint" region of the spectrum with high spatial resolution. We focus on a recently developed far-field optical technique, called infrared photothermal heterodyne imaging (IR-PHI), and discusses the technique in detail.
View Article and Find Full Text PDFLimited approaches exist for imaging and recording spectra of individual nanostructures in the midinfrared region. Here we use infrared photothermal heterodyne imaging (IR-PHI) to interrogate single, high aspect ratio Au nanowires (NWs). Spectra recorded between 2,800 and 4,000 cm for 2.
View Article and Find Full Text PDFActa Crystallogr Sect E Struct Rep Online
September 2014
In the title compound, C12H13NO2, the five-membered ring has an envelope conformation; the disubstituted C atom lies out of the mean plane through the four other ring atoms (r.m.s.
View Article and Find Full Text PDF