Proc Natl Acad Sci U S A
November 2022
Confining compartments are ubiquitous in biology, but there have been few experimental studies on the thermodynamics of protein folding in such environments. Recently, we reported that the stability of a model protein substrate in the GroEL/ES chaperonin cage is reduced dramatically by more than 5 kcal mol compared to that in bulk solution, but the origin of this effect remained unclear. Here, we show that this destabilization is caused, at least in part, by a diminished hydrophobic effect in the GroEL/ES cavity.
View Article and Find Full Text PDFThe thermodynamics of protein folding in bulk solution have been thoroughly investigated for decades. By contrast, measurements of protein substrate stability inside the GroEL/ES chaperonin cage have not been reported. Such measurements require stable encapsulation, that is no escape of the substrate into bulk solution during experiments, and a way to perturb protein stability without affecting the chaperonin system itself.
View Article and Find Full Text PDFThe strength and specificity of protein complex formation is crucial for most life processes and is determined by interactions between residues in the binding partners. Double-mutant cycle analysis provides a strategy for studying the energetic coupling between amino acids at the interfaces of such complexes. Here we show that these pairwise interaction energies can be determined from a single high-resolution native mass spectrum by measuring the intensities of the complexes formed by the two wild-type proteins, the complex of each wild-type protein with a mutant protein, and the complex of the two mutant proteins.
View Article and Find Full Text PDFThe chaperonin-containing t-complex polypeptide 1 (CCT, also known as TRiC) assists protein folding in an ATP-dependent manner. CCT/TRiC was mixed rapidly with different concentrations of ATP, and the amount of phosphate formed upon ATP hydrolysis was measured as a function of time using the coumarin-labeled phosphate-binding protein method. Two burst phases were observed, followed by a lag phase and then a linear steady-state phase of ATP hydrolysis.
View Article and Find Full Text PDF