Publications by authors named "Ilho Kang"

A lead aryl pyrrolidinone anilide identified using high-throughput in vivo screening was optimized for efficacy, crop safety, and weed spectrum, resulting in tetflupyrolimet. Known modes of action were ruled out through in vitro enzyme and in vivo plant-based assays. Genomic sequencing of aryl pyrrolidinone anilide-resistant progeny combined with nutrient reversal experiments and metabolomic analyses confirmed that the molecular target of the chemistry was dihydroorotate dehydrogenase (DHODH), the enzyme that catalyzes the fourth step in the de novo pyrimidine biosynthesis pathway.

View Article and Find Full Text PDF

Herbicide resistance has emerged globally as a serious threat to profitable crop production. FMC promotes integrated weed management approaches including responsible use of existing herbicides, use of non-herbicide weed control tools, awareness about herbicide resistance issues, and support to herbicide resistance management initiatives. FMC is dedicated to developing sustainable weed control solutions through the discovery of new herbicides with novel sites-of-action, effective formulations, advanced application technology, and proactive monitoring for herbicide resistance.

View Article and Find Full Text PDF
Article Synopsis
  • A bio-derived hardener, Van2HMDA, was created from vanillin and hexamethylene-1,6-diamine to cure epoxy resin, enhancing its properties.
  • The resulting epoxy resin exhibits thermal-healing and reshaping capabilities due to the imine bonds in the hardener, with relaxation time properties showing a specific activation energy.
  • While the resin is resistant to hydrolysis in water, it can be decomposed in acidic environments, allowing for eco-friendly recycling—but this process results in a lower quality material than the original.
View Article and Find Full Text PDF

The stenosing foramen of L5-S1 by several degenerative diseases is one of the challenging areas on surgical approaching because of the deeper depth and steep slope in the lumbosacral junction. The floating view using unilateral biportal endoscopic spine surgery rather than docking into the Kambin's zone can make the foraminal structures seen panoramically and permit dynamic handling of various instruments without destroying the facet joint and causing iatrogenic instability. Fine discrimination of structural margins in helps of the higher magnification and gentle manipulation of neural structures just as in open spine surgery could be guaranteed using floating technique from the target structures.

View Article and Find Full Text PDF

Objective: We compared the conventional 'one-bag protocol' of management of diabetic ketoacidosis (DKA) with the 'two-bag protocol' which utilizes two bags of fluids, one containing saline and supplemental electrolytes and the other containing the same solution with the addition of 10% dextrose.

Research Design And Methods: A retrospective chart review and analysis was done on adult patients admitted for DKA to the Riverside University Health System Medical Center from 2008 to 2015. There were 249 cases of DKA managed by the one-bag system and 134 cases managed by the two-bag system.

View Article and Find Full Text PDF

A novel method for preparing epoxy/silver nanocomposites was developed via the formation of silver nanoparticles (AgNPs) within the epoxy resin matrix while using silver nanowires (AgNWs) as a conductive filler. The silver⁻imidazole complex was synthesized from silver acetate (AgAc) and 1-(2-cyanoethyl)-2-ethyl-4-methylimidazole (imidazole). AgNPs were generated during the curing of the epoxy resin through the thermal decomposition of the AgAc⁻imidazole complex, which was capable of reducing Ag⁺ to Ag by itself.

View Article and Find Full Text PDF
Article Synopsis
  • A new curriculum was introduced in a medical education program to improve reflective writing skills among students, initially lacking instruction on critical reflection, through a 90-minute workshop.
  • The workshop included a video, group exercises, and personal reflections, followed by two written assignments assessed by faculty using a validated grading rubric to gauge the level of reflection.
  • Results showed a significant increase in critical reflection papers, rising from 14% to 47% after the intervention, indicating that structured reflection training can enhance students' reflective writing quality.
View Article and Find Full Text PDF

Polypyrimidine tract-binding (PTB) proteins are a family of RNA-binding proteins that function in a wide range of RNA metabolic processes by binding to motifs rich in uracils and cytosines. A PTB protein of pumpkin was identified as the core protein of an RNA-protein complex that trafficks RNA. The biological function of the PTB-RNA complex, however, has not been demonstrated.

View Article and Find Full Text PDF

Heterografting and RNA transport experiments have demonstrated the long-distance mobility of StBEL5 RNA, its role in controlling tuber formation, and the function of the 503-nt 3' untranslated region (UTR) of the RNA in mediating transport. Because the 3' UTR of StBEL5 is a key element in regulating several aspects of RNA metabolism, a potato leaf cDNA library was screened using the 3' UTR of StBEL5 as bait in the yeast three-hybrid (Y3H) system to identify putative partner RNA-binding proteins (RBPs). From this screen, 116 positive cDNA clones were isolated based on nutrient selection, HIS3 activation, and lacZ induction and were sequenced and classified.

View Article and Find Full Text PDF

Background: In flowering plants, the female gametophyte is typically a seven-celled structure with four cell types: the egg cell, the central cell, the synergid cells, and the antipodal cells. These cells perform essential functions required for double fertilization and early seed development. Differentiation of these distinct cell types likely involves coordinated changes in gene expression regulated by transcription factors.

View Article and Find Full Text PDF

The central cell of the female gametophyte plays a role in pollen tube guidance and in regulating the initiation of endosperm development. Following fertilization, the central cell gives rise to the seed's endosperm, which nourishes the developing embryo within the seed. The molecular mechanisms controlling specification and differentiation of the central cell are poorly understood.

View Article and Find Full Text PDF

Endosperm, a storage tissue in the angiosperm seed, provides nutrients to the embryo during seed development and/or to the developing seedling during germination. A major event in endosperm development is the transition between the syncytial phase, during which the endosperm nuclei undergo many rounds of mitosis without cytokinesis, and the cellularized phase, during which cell walls form around the endosperm nuclei. The molecular processes controlling this phase transition are not understood.

View Article and Find Full Text PDF

The angiosperm female gametophyte typically consists of one egg cell, two synergid cells, one central cell, and three antipodal cells. Each of these four cell types has unique structural features and performs unique functions that are essential for the reproductive process. The gene regulatory networks conferring these four phenotypic states are largely uncharacterized.

View Article and Find Full Text PDF

Peanut (Arachis hypogaea) seed proteins Ara h 1, Ara h 2, and Ara h 3 are considered to be the major peanut allergens. However, little is known about their temporal and spatial expression during seed development and upon germination and seedling growth. In this study, transcript levels of the three major peanut allergen genes, ara h 1, ara h 2, and ara h 3, and their corresponding proteins were found in all cultivars.

View Article and Find Full Text PDF