Publications by authors named "Ilhem F Hakem"

A facile synthetic method was developed to prepare sub-5 nm organo-silica (oSiO) nanoparticles through the self-condensation of atom transfer radical polymerization (ATRP)-initiator-containing silica precursors. The obtained oSiO nanoparticles were characterized by a combination of nuclear magnetic resonance (NMR), thermogravimetric analysis (TGA), transmission electron microscopy (TEM), dynamic light scattering (DLS), and small-angle neutron scattering (SANS). The accessibility of the surface-Br initiating sites was evaluated by the polymerization of poly(methyl methacrylate) (PMMA) ligands from the surface of the oSiO nanoparticles using surface-initiated atom transfer radical polymerization (SI-ATRP).

View Article and Find Full Text PDF

A methodology based on light scattering and spectrophotometry was developed to evaluate the effect of organic surfactants on the size and yield of eutectic gallium/indium (EGaIn) nanodroplets formed in organic solvents by ultrasonication. The process was subsequently applied to systematically evaluate the role of headgroup chemistry as well as polar/apolar interactions of aliphatic surfactant systems on the efficiency of nanodroplet formation. Ethanol was found to be the most effective solvent medium in promoting the formation and stabilization of EGaIn nanodroplets.

View Article and Find Full Text PDF

The functionalization with phosphotriesterase of poly(isoprene-b-styrene-b-4-vinylpyridine)-based nanoporous membranes fabricated by self-assembly and nonsolvent induced phase separation (SNIPS) is shown to enable dynamically responsive membranes capable of substrate-specific and localized gating response. Integration of the SNIPS process with macroporous nylon support layers yields mechanically robust textile-type films with high moisture vapor transport rates that display rapid and local order-of-magnitude modulation of permeability. The simplicity of the fabrication process that is compatible with large-area fabrication along with the versatility and efficacy of enzyme reactivity offers intriguing opportunities for engineered biomimetic materials that are tailored to respond to a complex range of external parameters, providing sensing, protection, and remediation capabilities.

View Article and Find Full Text PDF

The effect of polymer conjugation on the interactions between proteins in solution is evaluated by systematic analysis of the second virial coefficient (A2) for the particular example of single- and double-PEGylated bovine serum albumin (PEG-BSA) in dilute PBS solution. The effect of PEGylation on A2 is found to sensitively depend on both the composition and the distribution of PEG segments within the conjugate. Most importantly, at a given PEG volume fraction, A2 significantly increases with the degree of polymerization of tethered chains.

View Article and Find Full Text PDF

Spherical gold nanoparticles (GNPs) have been synthesized in aqueous solutions using sodium citrate (SC) and tannic acid (TA) as reducing and stabilizing agents. Upon addition of TA and compared to the GNP TA-free aqueous solutions, a reduction of the GNPs size and consequently a dramatic change of their optical properties have been observed and quantitatively analyzed using Mie theory. An increase in the concentration of TA reveals a modification of the colloidal solution refractive index that is evidenced by the shift in the peak position of the localized surface plasmon resonance (LSPR) band.

View Article and Find Full Text PDF

The compositional heterogeneity associated with polymer conjugation reactions of biomolecules is analyzed for the particular case of nonspecific PEGylation reactions. It is shown that the distribution of the number of PEG moieties grafted to biomolecules such as proteins is a binomial-type function of two parameters-the reaction efficiency as well as the number of binding sites per biomolecule. The nature of this distribution implies that uniform compositions are favored for increasing number of coupling sites per biomolecule as well as for increasing efficiency of the modification process.

View Article and Find Full Text PDF

Chemical modification of nanoparticles or particlelike systems is ubiquitously being used to facilitate specific pharmaceutical functionalities or physicochemical attributes of nanocrystals, proteins, enzymes, or other particlelike systems. Often the modification process is incomplete and the functional activity of the product depends upon the distribution of functional ligands among the different particles in the system. Here, the distribution function describing the spread of ligands in particlelike systems undergoing partial modification reactions is derived and validated against a conjugated enzyme model system by use of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF).

View Article and Find Full Text PDF

We present a lattice model to describe the effect of isotopic replacement, temperature, and pressure changes on the formation of hydrogen bonds in liquid water. The approach builds upon a previously established generalized lattice theory for hydrogen bonded liquids [B. A.

View Article and Find Full Text PDF