Publications by authors named "Ilhan Bok"

Electrophysiological recordings from brain cells are performed routinely using implanted electrodes, but they traditionally require a wired connection to the outside of the brain. A completely passive, wireless device that does not require on-board power for active transmission but that still facilitates remote detection could open the door for mass-scale direct recording of action potentials and transform the way we acquire brain signals. We present a nanofabricated coil that forms a neuroelectromagnetic junction, yielding a highly enhanced magnetic field transduction of electrophysiology.

View Article and Find Full Text PDF

Circuit-integrated electromagnets are fundamental building blocks for on-chip signal transduction, modulation, and tunability, with specific applications in environmental and biomedical micromagnetometry. A primary challenge for improving performance is pushing quality limitations while minimizing size and fabrication complexity and retaining spatial capabilities. Recent efforts have exploited highly involved three-dimensional synthesis, advanced insulation, and exotic material compositions.

View Article and Find Full Text PDF

Background: Processing neural activity to reconstruct network connectivity is a central focus of neuroscience, yet the spatiotemporal requisites of biological nervous systems are challenging for current neuronal sensing modalities. Consequently, methods that leverage limited data to successfully infer synaptic connections, predict activity at single unit resolution, and decipher their effect on whole systems, can uncover critical information about neural processing. Despite the emergence of powerful methods for inferring connectivity, network reconstruction based on temporally subsampled data remains insufficiently unexplored.

View Article and Find Full Text PDF

Purpose: We aim to verify predictions showing T relaxation rate of nanoparticle clusters and its dependence on spacing, size, geometry, and pulse sequence.

Methods: We performed a laboratory validation study using nanopatterned arrays of iron oxide nanoparticles to precisely control cluster geometry and image diverse samples using a 4.7T MRI scanner with a T -weighted fast spin-echo multislice sequence.

View Article and Find Full Text PDF

New sensors and modulators that interact wirelessly with medical modalities unlock uncharted avenues for in situ brain recording and stimulation. Ongoing miniaturization, material refinement, and sensitization to specific neurophysiological and neurochemical processes are spurring new capabilities that begin to transcend the constraints of traditional bulky and invasive wired probes. Here we survey current state-of-the-art agents across diverse realms of operation and evaluate possibilities depending on size, delivery, specificity and spatiotemporal resolution.

View Article and Find Full Text PDF

Reconstructing connectivity of neuronal networks from single-cell activity is essential to understanding brain function, but the challenge of deciphering connections from populations of silent neurons has been largely unmet. We demonstrate a protocol for deriving connectivity of simulated silent neuronal networks using stimulation combined with a supervised learning algorithm, which enables inferring connection weights with high fidelity and predicting spike trains at the single-spike and single-cell levels with high accuracy. We apply our method on rat cortical recordings fed through a circuit of heterogeneously connected leaky integrate-and-fire neurons firing at typical lognormal distributions and demonstrate improved performance during stimulation for multiple subpopulations.

View Article and Find Full Text PDF

Wireless brain technologies are empowering basic neuroscience and clinical neurology by offering new platforms that minimize invasiveness and refine possibilities during electrophysiological recording and stimulation. Despite their advantages, most systems require on-board power supply and sizeable transmission circuitry, enforcing a lower bound for miniaturization. Designing new minimalistic architectures that can efficiently sense neurophysiological events will open the door to standalone microscale sensors and minimally invasive delivery of multiple sensors.

View Article and Find Full Text PDF

In the filamentous fungus Aspergillus nidulans, the family protein VeA and the global regulator of secondary metabolism LaeA govern development and secondary metabolism mostly by acting as the VelB/VeA/LaeA heterotrimeric complex. While functions of these highly conserved controllers have been well studied, the genome-wide regulatory networks governing cellular and chemical development remain to be uncovered. Here, by integrating transcriptomic analyses, protein-DNA interactions, and the known A.

View Article and Find Full Text PDF

Wireless brain technologies are empowering basic neuroscience and clinical neurology by offering new platforms that minimize invasiveness and refine possibilities during electrophysiological recording and stimulation. Despite their advantages, most systems require on-board power supply and sizeable transmission circuitry, enforcing a lower bound for miniaturization. Designing new minimalistic architectures that can efficiently sense neurophysiological events will open the door to standalone microscale sensors and minimally invasive delivery of multiple sensors.

View Article and Find Full Text PDF

Magnetoelectric materials hold untapped potential to revolutionize biomedical technologies. Sensing of biophysical processes in the brain is a particularly attractive application, with the prospect of using magnetoelectric nanoparticles (MENPs) as injectable agents for rapid brain-wide modulation and recording. Recent studies have demonstrated wireless brain stimulation in vivo using MENPs synthesized from cobalt ferrite (CFO) cores coated with piezoelectric barium titanate (BTO) shells.

View Article and Find Full Text PDF