Coronavirus disease of 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has sparked a global pandemic with severe complications and high morbidity rate. Neurological symptoms in COVID-19 patients, and neurological sequelae post COVID-19 recovery have been extensively reported. Yet, neurological molecular signature and signaling pathways that are affected in the central nervous system (CNS) of COVID-19 severe patients remain still unknown and need to be identified.
View Article and Find Full Text PDFThere is an urgent need to find reliable and accessible blood-based biomarkers for early diagnosis of Parkinson's disease (PD) correlating with clinical symptoms and displaying predictive potential to improve future clinical trials. This led us to a conduct large-scale proteomics approach using an advanced high-throughput proteomics technology to create a proteomic profile for PD. Over 1300 proteins were measured in serum samples from a de novo Parkinson's (DeNoPa) cohort made up of 85 deep clinically phenotyped drug-naïve de novo PD patients and 93 matched healthy controls (HC) with longitudinal clinical follow-up available of up to 8 years.
View Article and Find Full Text PDFDespite the increasing number of studies on Parkinson's disease and it being the second most common neurodegenerative disorder in the world, no established diagnostic markers or disease modifying therapies are available. Understanding the mechanisms involved in its pathogenesis and identifying markers capable of diagnosing or tracking progression of PD is greatly needed. Among the several factors identified to be involved in Parkinson's disease, the immune system has had increasingly growing evidence that presents a fresh avenue to investigate the pathology of the disease.
View Article and Find Full Text PDFα-Synuclein (α-syn) phosphorylation at serine 129 (pS129–α-syn) is substantially increased in Lewy body disease, such as Parkinson’s disease (PD) and dementia with Lewy bodies (DLB). However, the pathogenic relevance of pS129–α-syn remains controversial, so we sought to identify when pS129 modification occurs during α-syn aggregation and its role in initiation, progression and cellular toxicity of disease. Using diverse aggregation assays, including real-time quaking-induced conversion (RT-QuIC) on brain homogenates from PD and DLB cases, we demonstrated that pS129–α-syn inhibits α-syn fibril formation and seeded aggregation.
View Article and Find Full Text PDFKrabbe disease is an infantile neurodegenerative disorder resulting from pathogenic variants in the GALC gene that causes accumulation of the toxic sphingolipid psychosine. GALC variants are also associated with Lewy body diseases, an umbrella term for age-associated neurodegenerative diseases in which the protein α-synuclein aggregates into Lewy bodies. To explore whether α-synuclein in Krabbe disease has pathological similarities to that in Lewy body disease, we performed an observational post-mortem study of Krabbe disease brain tissue (n = 4) compared to infant controls (n = 4) and identified widespread accumulations of α-synuclein.
View Article and Find Full Text PDFBackground: Tangible efforts have been made to identify biomarkers for Parkinson's disease (PD) diagnosis and progression, with α-synuclein (α-syn) related biomarkers being at the forefront.
Objectives: The objectives of this study were to explore whether cerebrospinal fluid (CSF) levels of total, oligomeric, phosphorylated Ser 129 α-synuclein, along with total tau, phosphorylated tau 181, and β-amyloid 1-42 are (1) informative as diagnostic markers for PD, (2) changed over disease progression, and/or (3) correlated with motor and cognitive indices of disease progression in the longitudinal De Novo Parkinson cohort.
Methods: A total of 94 de novo PD patients and 52 controls at baseline and 24- and 48-month follow-up were included, all of whom had longitudinal lumbar punctures and clinical assessments for both cognitive and motor functions.
: The role of cerebrospinal fluid (CSF) alpha-synuclein as a potential biomarker has been challenged mainly due to variable preanalytical measures between laboratories. To evaluate the impact of the preanalytical factors contributing to such variability, the different subforms of alpha-synuclein need to be studied individually. : We investigated the effect of exposing CSF samples to several preanalytical sources of variability: (1) different polypropylene (PP) storage tubes; (2) use of non-ionic detergents; (3) multiple tube transfers; (4) multiple freeze-thaw cycles; and (5) delayed storage.
View Article and Find Full Text PDF