Clin Gastroenterol Hepatol
January 2023
Purpose: Mesenchymal stromal cells (MSCs) have been shown to enhance tissue repair as a cell-based therapy. In preparation for a phase I clinical study, we evaluated the safety, dosing, and efficacy of bone marrow-derived MSCs after subconjunctival injection in preclinical animal models of mice, rats, and rabbits.
Methods: Human bone marrow-derived MSCs were expanded to passage 4 and cryopreserved.
In autosomal dominant conditions with haploinsufficiency, a single functional allele cannot maintain sufficient dosage for normal function. We hypothesized that pharmacologic induction of the wild-type allele could lead to gene dosage compensation and mitigation of the disease manifestations. The paired box 6 () gene is crucial in tissue development and maintenance particularly in eye, brain, and pancreas.
View Article and Find Full Text PDFTerpineol, a promising valorisation product of pine industry, is widely used as an active ingredient for disinfectant soap, cleansers, perfumes, and pharmaceutical purposes. Synthesis of terpineol is generally carried out by separation of α-pinene compounds from crude turpentine through fractionation and then hydrated (addition of water) with the help of acid catalysts. However, direct turpentine hydration without pre-fractionation process can be more beneficial from economic and process point of views.
View Article and Find Full Text PDFPurpose: A reproducible protocol for the production of corneal mesenchymal stem/stromal cells (cMSCs) is necessary for potential clinical applications. We aimed to describe successful generation and expansion of cMSCs using an explant method.
Methods: Corneoscleral rims of human cadaveric eyes were divided into four pieces and used as explants to allow outgrowth of cMSCs (passage 0, or P0).
Colonization by Staphylococcus aureus (S. aureus) has been implicated in many infectious and wound healing disorders. This study was performed to characterize the pathogenic role of S.
View Article and Find Full Text PDFSevere corneal injuries often result in permanent vision loss and remain a clinical challenge. Human bone marrow-derived mesenchymal stem cells (MSCs) and their secreted factors (secretome) have been studied for their antiscarring, anti-inflammatory, and antiangiogeneic properties. We aimed to deliver lyophilized MSC secretome (MSC-S) within a viscoelastic gel composed of hyaluronic acid (HA) and chondroitin sulfate (CS) as a way to enhance corneal re-epithelialization and reduce complications after mechanical and chemical injuries of the cornea.
View Article and Find Full Text PDFPurpose: To develop a reproducible ex vivo model of corneal endothelial cell injury using phacoemulsification in porcine eyes and to evaluate the effects of mesenchymal stromal cell secretome in this injury model.
Setting: Department of Ophthalmology, University of Illinois at Chicago, Illinois, USA.
Design: Experimental study.
Invest Ophthalmol Vis Sci
October 2018
Purpose: Mesenchymal stromal cells (MSCs) have been used therapeutically to modulate inflammation and promote repair. Extracellular vesicles, including exosomes, have been identified as one of the important mediators. This study investigated the effect of human corneal MSC-derived exosomes on corneal epithelial wound healing.
View Article and Find Full Text PDFMacrophages are crucial drivers of inflammatory corneal neovascularization and thus are potential targets for immunomodulatory therapies. We hypothesized that therapeutic use of cornea-derived mesenchymal stromal cells (cMSCs) may alter the function of macrophages. We found that cMSCs can modulate the phenotype and angiogenic function of macrophages.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
October 2017
Purpose: To evaluate the angiogenic properties of corneal derived mesenchymal stromal cells (Co-MSC).
Methods: Co-MSCs were extracted from human cadaver, and wild-type (C57BL/6J) and SERPINF1-/- mice corneas. The MSC secretome was collected in a serum-free medium.
Surface modifications with tethered growth factors have mainly been applied to synthetic polymeric biomaterials in well-controlled, acellular settings, followed by seeding with cells. The known bio-orthogonality of copper-free click chemistry provides an opportunity to not only use it in vitro to create scaffolds or pro-migratory tracks in the presence of living cells, but also potentially apply it to living tissues directly as a coupling modality in situ. In this study, we studied the chemical coupling of growth factors to collagen using biocompatible copper-free click chemistry and its effect on the enhancement of growth factor activity in vitro.
View Article and Find Full Text PDFRapamycin has previously been shown to have anti-aging effects in cells and organisms. These studies were undertaken to investigate the effects of rapamycin on primary human corneal epithelial cells in vitro. Cell growth and viability were evaluated by bright field microscopy.
View Article and Find Full Text PDFBackground: Immunohistochemical staining experiments have shown that both hemangiogenesis and lymphangiogenesis occur following severe corneal and conjunctival injury and that the neovascularization of the cornea often has severe visual consequences. To better understand how hemangiogenesis and lymphangiogenesis are induced by different degrees of ocular injury, we investigated patterns of injury-induced corneal neovascularization in live Prox1-GFP/Flk1::myr-mCherry mice, in which blood and lymphatic vessels can be imaged simultaneously in vivo.
Methods: The eyes of Prox1-GFP/Flk1::myr-mCherry mice were injured according to four models based on epithelial debridement of the: A) central cornea (a 1.