Publications by authors named "Ilgyu Choi"

Recently, we reported that device performance degradation mechanisms, which are generated by the γ-ray irradiation in GaN-based metal-insulator-semiconductor high electron mobility transistors (MIS-HEMTs), use extremely thin gate insulators. When the γ-ray was radiated, the total ionizing dose (TID) effects were generated and the device performance deteriorated. In this work, we investigated the device property alteration and its mechanisms, which were caused by the proton irradiation in GaN-based MIS-HEMTs for the 5 nm-thick SiN and HfO gate insulator.

View Article and Find Full Text PDF

We report the fast response characteristics of flexible ultraviolet photosensors with GaN nanowires (NWs) and a graphene channel. The GaN NWs used as light-absorbing media are horizontally and randomly embedded in a graphene sandwich structure in which the number of bottom graphene layers is varied from zero to three and the top is a fixed single layer of graphene. In the response curve of the photosensor with a double-layer bottom graphene, as obtained under pulsed illumination with a pulse width of 50 ms and a duty cycle of 50%, the rise and decay times were measured as 24.

View Article and Find Full Text PDF

Group III-nitride light-emitting diodes (LEDs) fabricated on sapphire substrates typically suffer from insufficient heat dissipation, largely due to the low thermal conductivities (TCs) of their epitaxial layers and substrates. In the current work, we significantly improved the heat-dissipation characteristics of an InGaN/GaN quantum-well (QW) green LED by using hexagonal boron nitride (hBN) as a heat-transfer medium. Multiple-layer hBN with an average thickness of 11 nm was attached to the back of an InGaN/GaN-QW LED (hBN-LED).

View Article and Find Full Text PDF

In this study, we report highly efficient and flexible photosensors with GaN nanowires (NWs) horizontally embedded in a graphene sandwich structure fabricated on polyethylene terephthalate. GaN NWs and the graphene sandwich structure are used as light-absorbing media and the channel for carrier movement, respectively. To form uniform high-quality crystalline GaN NWs on Si(111) substrates, the initial nucleation behavior of the NWs was manipulated by applying the new growth technique of Ga predeposition.

View Article and Find Full Text PDF

An effective screening method for inhibitors of NO production in natural products using LC-QTOF MS/MS coupled with a cell-based assay was proposed. The ethyl acetate fraction of Catalpa ovata exhibited a strong inhibitory effect on NO production in lipopolysaccharide-induced BV2 microglia cells. We attempted to identify the active constituents of C.

View Article and Find Full Text PDF

This paper reports the formation of GaN and InN quantum dots (QDs) with symmetric spherical shapes, grown on SiN/Si(111). Spherical QDs are grown by modulating initial growth behavior via gallium and indium droplets functioning as nucleation sites for QDs. Field-emission scanning electron microscope (FE-SEM) images show that GaN and InN QDs are formed on curved SiN/Si(111) instead of on a flat surface similar to balls on a latex mattress.

View Article and Find Full Text PDF

We report a phosphor-free white light-emitting diodes (LED) realized by the monolithic integration of InGaN/GaN (438 nm, blue), InGaN/GaN (513 nm, green), and InGaN/InGaN (602 nm, red) quantum wells (QWs) as an active medium. The QWs corresponding to blue and green light were grown using a conventional growth mode. For the red spectral emission, five-stacked InGaN/InGaN QWs were realized by the so-called Ga-flow-interruption (Ga-FI) technique, wherein the Ga supply was periodically interrupted during the deposition of InGaN to form an InGaN well.

View Article and Find Full Text PDF

We report the influences of a dot-in-a-well structure with a thin GaAs layer and the thickness of a waveguide (WG) on the lasing characteristics of InAs quantum dots (QDs) based on InP. The QD laser diodes (QDLDs) consist of seven-stacked InAs QDs separated by a 10 nm-thick InGaAsP (1.15 μm, 1.

View Article and Find Full Text PDF