Publications by authors named "Ilenia Bernascone"

Mammary stroma is essential for epithelial morphogenesis and development. Indeed, postnatal mammary gland (MG) development is controlled locally by the repetitive and bi-directional cross-talk between the epithelial and the stromal compartment. However, the signalling pathways involved in stromal-epithelial communication are not entirely understood.

View Article and Find Full Text PDF

Transition from symmetric to asymmetric cell division requires precise coordination of differential gene expression. We show that embryonic stem cells (ESCs) mainly express DIDO3 and that their differentiation after leukemia inhibitory factor withdrawal requires DIDO1 expression. C-terminal truncation of DIDO3 (Dido3ΔCT) impedes ESC differentiation while retaining self-renewal; small hairpin RNA-Dido1 ESCs have the same phenotype.

View Article and Find Full Text PDF

Epithelial tubes are crucial to the function of organ systems including the excretory, gastrointestinal, cardiovascular, and pulmonary. Studies in the last two decades using in vitro organotypic systems and a variety of animal models have substantiated a large number of the morphogenetic mechanisms required to form epithelial tubes in development and regeneration. Many of these mechanisms modulate the differentiation and proliferation events necessary for generating the cell movements and changes in cell shape to delineate the wide variety of epithelial tube sizes, lengths, and conformations.

View Article and Find Full Text PDF

Epithelial tissues undergo constant growth and differentiation during embryonic development and to replace damaged tissue in adult organs. These processes are governed by different signaling pathways that ultimately control the expression of genes associated with cell proliferation, patterning, and death. One essential pathway is Wnt, which controls tubulogenesis in several epithelial organs.

View Article and Find Full Text PDF

The formation of epithelial tissues requires both the generation of apical-basal polarity and the coordination of this polarity between neighbouring cells to form a central lumen. During de novo lumen formation, vectorial membrane transport contributes to the formation of a singular apical membrane, resulting in the contribution of each cell to only a single lumen. Here, from a functional screen for genes required for three-dimensional epithelial architecture, we identify key roles for synaptotagmin-like proteins 2-a and 4-a (Slp2-a/4-a) in the generation of a single apical surface per cell.

View Article and Find Full Text PDF

Uromodulin is exclusively expressed in the thick ascending limb and is the most abundant protein secreted in urine where it is found in high-molecular-weight polymers. Its biological functions are still elusive, but it is thought to play a protective role against urinary tract infection, calcium oxalate crystal formation, and regulation of water and salt balance in the thick ascending limb. Mutations in uromodulin are responsible for autosomal-dominant kidney diseases characterized by defective urine concentrating ability, hyperuricemia, gout, tubulointerstitial fibrosis, renal cysts, and chronic kidney disease.

View Article and Find Full Text PDF

Uromodulin-associated kidney diseases (UAKD) are autosomal-dominant disorders characterized by alteration of urinary concentrating ability, tubulo-interstitial fibrosis, hyperuricaemia and renal cysts at the cortico-medullary junction. UAKD are caused by mutations in UMOD, the gene encoding uromodulin. Although uromodulin is the most abundant protein secreted in urine, its physiological role remains elusive.

View Article and Find Full Text PDF

Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) is a focal form of epilepsy characterized by seizures occurring during non-REM sleep. We have developed and characterized the first mouse model for ADNFLE type III carrying the V287L mutation of the beta2 subunit of neuronal nicotinic receptor. Mice expressing mutant receptors show a spontaneous epileptic phenotype by electroencephalography with very frequent interictal spikes and seizures.

View Article and Find Full Text PDF

Uromodulin (or Tamm-Horsfall protein) is the most abundant protein in human urine under physiological conditions. Little is known about the molecular mechanism of uromodulin secretion. By extensive Mass Spectrometry analyses we mapped the C-termini of human and murine urinary proteins demonstrating that urinary uromodulin is generated by a conserved C-terminal proteolytic cleavage and retains its entire ZP domain.

View Article and Find Full Text PDF

Medullary cystic kidney disease/familial juvenile hyperuricemic nephropathy (MCKD/FJHN) are autosomal dominant renal disorders characterized by tubulo-interstitial fibrosis, hyperuricemia and medullary cysts. They are caused by mutations in the gene encoding uromodulin, the most abundant protein in urine. Uromodulin (or Tamm-Horsfall protein) is a glycoprotein that is exclusively expressed by epithelial tubular cells of the thick ascending limb of Henle's loop and distal convoluted tubule.

View Article and Find Full Text PDF

Background: Familial juvenile hyperuricaemic nephropathy (FJHN) is an autosomal-dominant disorder featuring hyperuricaemia, low fractional urate excretion, interstitial nephritis and chronic renal failure. The responsible gene UMOD was recently identified. UMOD encodes for uromodulin or Tamm-Horsfall glycoprotein, the most abundant protein in normal urine.

View Article and Find Full Text PDF

The disease complex medullary cystic disease/familial juvenile hyperuricemic nephropathy (MCKD/FJHN) is characterized by alteration of urinary concentrating ability, frequent hyperuricemia, tubulo-interstitial fibrosis, cysts at the cortico-medullary junction and renal failure. MCKD/FJHN is caused by mutations of the gene encoding uromodulin, the most abundant protein in urine. Here, we describe new missense mutations in three families with MCKD/FJHN and demonstrate allelism with a glomerulocystic kidney disease (GCKD) variant, showing association of cyst dilatation and collapse of glomeruli with some clinical features similar to MCKD/FJHN as hyperuricemia and impairment of urine concentrating ability.

View Article and Find Full Text PDF