Spatial light modulators have desirable applications in sensing and free space communication because they create an interface between the optical and electronic realms. Electro-optic modulators allow for high-speed intensity manipulation of an electromagnetic wavefront. However, most surfaces of this sort pose limitations due to their ability to modulate intensity rather than phase.
View Article and Find Full Text PDFCavities concentrate light and enhance its interaction with matter. Confining to microscopic volumes is necessary for many applications but space constraints in such cavities limit the design freedom. Here we demonstrate stable optical microcavities by counteracting the phase evolution of the cavity modes using an amorphous Silicon metasurface as cavity end mirror.
View Article and Find Full Text PDFOptical resonators enable the generation, manipulation, and storage of electromagnetic waves. The physics underlying their operation is determined by the interference of electromagnetic waves, giving rise to the resonance spectrum. This mechanism causes the limitations and trade-offs of resonator design, such as the fixed relationship between free spectral range, modal linewidth, and the resonator's refractive index and size.
View Article and Find Full Text PDFBridging the "terahertz gap" relies upon synthesizing arbitrary waveforms in the terahertz domain enabling applications that require both narrow band sources for sensing and few-cycle drives for classical and quantum objects. However, realization of custom-tailored waveforms needed for these applications is currently hindered due to limited flexibility for optical rectification of femtosecond pulses in bulk crystals. Here, we experimentally demonstrate that thin-film lithium niobate circuits provide a versatile solution for such waveform synthesis by combining the merits of complex integrated architectures, low-loss distribution of pump pulses on-chip, and an efficient optical rectification.
View Article and Find Full Text PDFElectro-optic modulators are essential for sensing, metrology and telecommunications. Most target fiber applications. Instead, metasurface-based architectures that modulate free-space light at gigahertz (GHz) speeds can boost flat optics technology by microwave electronics for active optics, diffractive computing or optoelectronic control.
View Article and Find Full Text PDFTailored nanostructures provide at-will control over the properties of light, with applications in imaging and spectroscopy. Active photonics can further open new avenues in remote monitoring, virtual or augmented reality and time-resolved sensing. Nanomaterials with χ nonlinearities achieve highest switching speeds.
View Article and Find Full Text PDFTerahertz sources and detectors have enabled numerous new applications from medical to communications. Yet, most efficient terahertz detection schemes rely on complex free-space optics and typically require high-power lasers as local oscillators. Here, we demonstrate a fiber-coupled, monolithic plasmonic terahertz field detector on a silicon-photonics platform featuring a detection bandwidth of 2.
View Article and Find Full Text PDFQuantum mechanics ascribes to the ground state of the electromagnetic radiation zero-point electric field fluctuations that permeate empty space at all frequencies. No energy can be extracted from the ground state of a system, and therefore these fluctuations cannot be measured directly with an intensity detector. The experimental proof of their existence therefore came from more indirect evidence, such as the Lamb shift, the Casimir force between close conductors or spontaneous emission.
View Article and Find Full Text PDF