Background: Autoimmune Addison's disease (AAD) is the most common cause of primary adrenal insufficiency (PAI). Despite its exceptionally high heritability, tools to estimate disease susceptibility in individual patients are lacking. We hypothesized that polygenic risk score (PRS) for AAD could help investigate PAI pathogenesis in pediatric patients.
View Article and Find Full Text PDFObjective: Autoimmune Addison's disease (AAD) entails a chronic adrenal insufficiency and is associated with an increased risk of severe infections. It is, however, unknown how patients with AAD were affected by the coronavirus disease 2019 (COVID-19) pandemic of 2020-2021. This study was aimed at investigating the incidence of COVID-19 in patients with AAD in Sweden, the self-adjustment of medications during the disease, impact on social aspects, and treatment during hospitalization.
View Article and Find Full Text PDFBackground: Excessive production of mitochondrial reactive oxygen species (ROS) is a central mechanism for the development of diabetes complications. Recently, hypoxia has been identified to play an additional pathogenic role in diabetes. In this study, we hypothesized that ROS overproduction was secondary to the impaired responses to hypoxia due to the inhibition of hypoxia-inducible factor-1 (HIF-1) by hyperglycemia.
View Article and Find Full Text PDFAutoimmune Addison's disease (AAD) is characterized by the autoimmune destruction of the adrenal cortex. Low prevalence and complex inheritance have long hindered successful genetic studies. We here report the first genome-wide association study on AAD, which identifies nine independent risk loci (P < 5 × 10).
View Article and Find Full Text PDFWound healing is a high energy demanding process that needs a good coordination of the mitochondria with glycolysis in the characteristic highly hypoxic environment. In diabetes, hyperglycemia impairs the adaptive responses to hypoxia with profound negative effects on different cellular compartments of wound healing. miR-210 is a hypoxia-induced microRNA that regulates cellular metabolism and processes important for wound healing.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2019
Diabetic foot ulcerations (DFUs) represent a major medical, social, and economic problem. Therapeutic options are restricted due to a poor understanding of the pathogenic mechanisms. The Notch pathway plays a pivotal role in cell differentiation, proliferation, and angiogenesis, processes that are profoundly disturbed in diabetic wounds.
View Article and Find Full Text PDFObjective: IGF-I is a growth factor, which is expressed in virtually all tissues. The circulating IGF-I is however derived mainly from the liver. IGF-I promotes wound healing and its levels are decreased in wounds with low regenerative potential such as diabetic wounds.
View Article and Find Full Text PDFAims: Excessive vascular cell proliferation is an important component of pulmonary hypertension (PH). Perlecan is the major heparan sulfate (HS) proteoglycan in the vascular extracellular matrix. It binds growth factors, including FGF2, and either restricts or promotes cell proliferation.
View Article and Find Full Text PDFHyperbaric oxygen (HBO) therapy has been used as an adjunctive therapy for diabetic foot ulcers, although its mechanism of action is not completely understood. Recently, it has been shown that HBO mobilizes the endothelial progenitor cells (EPCs) from bone marrow that eventually will aggregate in the wound. However, the gathering of the EPCs in diabetic wounds is impaired because of the decreased levels of local stromal-derived factor-1α (SDF-1α).
View Article and Find Full Text PDFObjective: Hypoxia plays a major pathogenic role in diabetic nephropathy (DN). We have investigated in this study the effect of hypoxia-inducible factor 1 α subunit (HIF1A) genetic polymorphisms on the development of DN.
Research Design And Methods: In 1,165 American type 1 diabetic patients with and without DN selected from the Genetics of Kidneys in Diabetes (GoKinD) study, the HIF1A genetic polymorphisms were genotyped with TaqMan allelic discrimination.
Background: Increased production of reactive oxygen species (ROS) in mitochondria has been proposed as the pathogenic mechanism for chronic complications of diabetes. Mitochondrial DNA (mtDNA) is more vulnerable to reactive oxygen species. However, there are few data on the mitochondrial DNA damage in diabetes and these are available only from patients with different duration of the disease and tissues not relevant to the chronic complications of diabetes.
View Article and Find Full Text PDFRelative hypoxia is essential in wound healing since it normally plays a pivotal role in regulation of all the critical processes involved in tissue repair. Hypoxia-inducible factor (HIF) 1alpha is the critical transcription factor that regulates adaptive responses to hypoxia. HIF-1alpha stability and function is regulated by oxygen-dependent soluble hydroxylases targeting critical proline and asparaginyl residues.
View Article and Find Full Text PDFPurpose: Neoangiogenesis is essential for tumor development. Hypoxia-inducible factor (HIF), a transcriptional factor composed of two subunits (alpha and beta), plays a key role in this process, activating proangiogenic factors such as vascular endothelial growth factor (VEGF). The HIF alpha subunits are critically regulated by oxygen and are also modulated by growth factors.
View Article and Find Full Text PDFObjective: Intraarticular corticosteroids are frequently used as successful adjuvant therapy for inflammatory arthritides, but little is known about their effects on molecules that regulate bone biology. We undertook this study to investigate the effect of intraarticular corticosteroids on the synovial expression of RANKL and osteoprotegerin (OPG).
Methods: We evaluated RANKL, OPG, and surface marker expression by immunohistochemical methods in synovial knee biopsy samples obtained from 13 patients with inflammatory arthritis before and 2 weeks following intraarticular injection of triamcinolone hexacetonide.
Objective: Treatment of rheumatoid arthritis (RA) with tumor necrosis factor (TNF)-blocking agents, including etanercept and infliximab, has resulted in reductions in the radiographic progression of RA. However, the exact mechanism by which this protection occurs has not been determined. In order to add to such knowledge, we investigated the effect of anti-TNF therapy on the expression of osteoprotegerin (OPG) and receptor activator of NF-kappaB ligand (RANKL) in synovial tissue.
View Article and Find Full Text PDF