Publications by authors named "Ileana O Jelescu"

Introduction: Type C hepatic encephalopathy (HE) is a decompensating event of chronic liver disease leading to severe motor and cognitive impairment. The progression of type C HE is associated with changes in brain metabolite concentrations measured by H magnetic resonance spectroscopy (MRS), most noticeably a strong increase in glutamine to detoxify brain ammonia. In addition, alterations of brain cellular architecture have been measured by histology in a rat model of type C HE.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists studied a brain connection called LC-TEC in people with Alzheimer's disease (AD) and a type of dementia called frontotemporal dementia (bvFTD).
  • They used special MRI scans to look at the brain's structure and found that people with bvFTD had more serious changes in this pathway compared to those with AD and healthy people.
  • The results suggest that the changes in the LC-TEC pathway are linked to the loss of thickness in another brain area called the entorhinal cortex, especially in bvFTD patients.
View Article and Find Full Text PDF

Background: The pathological process of Alzheimer's disease (AD) typically takes decades from onset to clinical symptoms. Early brain changes in AD include MRI-measurable features such as altered functional connectivity (FC) and white matter degeneration. The ability of these features to discriminate between subjects without a diagnosis, or their prognostic value, is however not established.

View Article and Find Full Text PDF

Purpose: Biophysical models of diffusion MRI have been developed to characterize microstructure in various tissues, but existing models are not suitable for tissue composed of permeable spherical cells. In this study we introduce Cellular Exchange Imaging (CEXI), a model tailored for permeable spherical cells, and compares its performance to a related Ball & Sphere (BS) model that neglects permeability.

Methods: We generated DW-MRI signals using Monte-Carlo simulations with a PGSE sequence in numerical substrates made of spherical cells and their extracellular space for a range of membrane permeability.

View Article and Find Full Text PDF
Article Synopsis
  • * It introduces StandardRat, a standardized fMRI acquisition protocol for rats that has been tested across 20 research centers to enhance data integration.
  • * The standardized protocol and processing pipeline improve the reliability of detecting functional connectivity patterns and are made publicly available to foster collaboration in the neuroimaging field.
View Article and Find Full Text PDF

Diffusion-weighted (DW) magnetic resonance spectroscopy (MRS) suffers from a lower signal to noise ratio (SNR) compared to conventional MRS owing to the addition of diffusion attenuation. This technique can therefore strongly benefit from noise reduction strategies. In the present work, Marchenko-Pastur principal component analysis (MP-PCA) denoising is tested on Monte Carlo simulations and on in vivo DW-MRS data acquired at 9.

View Article and Find Full Text PDF

Biophysical models of diffusion in white matter have been center-stage over the past two decades and are essentially based on what is now commonly referred to as the "Standard Model" (SM) of non-exchanging anisotropic compartments with Gaussian diffusion. In this work, we focus on diffusion MRI in gray matter, which requires rethinking basic microstructure modeling blocks. In particular, at least three contributions beyond the SM need to be considered for gray matter: water exchange across the cell membrane - between neurites and the extracellular space; non-Gaussian diffusion along neuronal and glial processes - resulting from structural disorder; and signal contribution from soma.

View Article and Find Full Text PDF

Resting state functional MRI (rs-fMRI) is a widespread and powerful tool for investigating functional connectivity (FC) and brain disorders. However, FC analysis can be seriously affected by random and structured noise from non-neural sources, such as physiology. Thus, it is essential to first reduce thermal noise and then correctly identify and remove non-neural artifacts from rs-fMRI signals through optimized data processing methods.

View Article and Find Full Text PDF

The biophysical modeling efforts in diffusion MRI have grown considerably over the past 25 years. In this review, we dwell on the various challenges along the journey of bringing a biophysical model from initial design to clinical implementation, identifying both hurdles that have been already overcome and outstanding issues. First, we describe the critical initial task of selecting which features of tissue microstructure can be estimated using a model and which acquisition protocol needs to be implemented to make the estimation possible.

View Article and Find Full Text PDF

Beta amyloid (Aβ) accumulation is the earliest pathological marker of Alzheimer's disease (AD), but early AD pathology also affects white matter (WM) integrity. We performed a cross-sectional study including 44 subjects (23 healthy controls and 21 mild cognitive impairment or early AD patients) who underwent simultaneous PET-MR using 18F-Florbetapir, and were categorized into 3 groups based on Aβ burden: Aβ- [mean mSUVr ≤1.00], Aβi [1.

View Article and Find Full Text PDF

Balanced steady-state free precession (bSSFP) can be used as an alternative to gradient-echo (GE) EPI for BOLD functional MRI when image distortions and signal drop-outs are severe such as at ultra-high field. However, 3D-bSSFP acquisitions have distinct drawbacks on either human or animal MR systems. On clinical scanners, 3D imaging is suboptimal for localized fMRI applications.

View Article and Find Full Text PDF

A two-compartment model of diffusion in white matter, which accounts for intra- and extra-axonal spaces, is associated with two plausible mathematical scenarios: either the intra-axonal axial diffusivity D is higher than the extra-axonal D (Branch 1), or the opposite, i.e. D < D (Branch 2).

View Article and Find Full Text PDF

Diffusion MRI is arguably the method of choice for characterizing white matter microstructure in vivo. Over the typical duration of diffusion encoding, the displacement of water molecules is conveniently on a length scale similar to that of the underlying cellular structures. Moreover, water molecules in white matter are largely compartmentalized which enables biologically-inspired compartmental diffusion models to characterize and quantify the true biological microstructure.

View Article and Find Full Text PDF

We develop a general analytical and numerical framework for estimating intra- and extra-neurite water fractions and diffusion coefficients, as well as neurite orientational dispersion, in each imaging voxel. By employing a set of rotational invariants and their expansion in the powers of diffusion weighting, we analytically uncover the nontrivial topology of the parameter estimation landscape, showing that multiple branches of parameters describe the measurement almost equally well, with only one of them corresponding to the biophysical reality. A comprehensive acquisition shows that the branch choice varies across the brain.

View Article and Find Full Text PDF

There is a need for accurate quantitative non-invasive biomarkers to monitor myelin pathology in vivo and distinguish myelin changes from other pathological features including inflammation and axonal loss. Conventional MRI metrics such as T2, magnetization transfer ratio and radial diffusivity have proven sensitivity but not specificity. In highly coherent white matter bundles, compartment-specific white matter tract integrity (WMTI) metrics can be directly derived from the diffusion and kurtosis tensors: axonal water fraction, intra-axonal diffusivity, and extra-axonal radial and axial diffusivities.

View Article and Find Full Text PDF
Article Synopsis
  • Simultaneous PET/MR imaging of the brain shows promise for evaluating cognitive impairment and epilepsy, but inaccuracies in PET SUV estimates due to MR signal differences pose challenges for clinical use.* -
  • A study compared various MR-based attenuation correction (AC) methods to reference CT AC in 16 patients, revealing that enhancing the linear AC for brain tissue and including a model-based bone compartment significantly improved the accuracy of SUV estimations.* -
  • The modified MR AC method resulted in a 95% reduction in SUV estimation bias across the whole brain, achieving an almost zero average bias and demonstrating potential for reliable brain imaging in neurodegeneration cases without needing extra MR imaging techniques.*
View Article and Find Full Text PDF

The ultimate promise of diffusion MRI (dMRI) models is specificity to neuronal microstructure, which may lead to distinct clinical biomarkers using noninvasive imaging. While multi-compartment models are a common approach to interpret water diffusion in the brain in vivo, the estimation of their parameters from the dMRI signal remains an unresolved problem. Practically, even when q space is highly oversampled, nonlinear fit outputs suffer from heavy bias and poor precision.

View Article and Find Full Text PDF

Purpose: To study and reduce the effect of Gibbs ringing artifact on computed diffusion parameters.

Methods: We reduce the ringing by extrapolating the k-space of each diffusion weighted image beyond the measured part by selecting an adequate regularization term. We evaluate several regularization terms and tune the regularization parameter to find the best compromise between anatomical accuracy of the reconstructed image and suppression of the Gibbs artifact.

View Article and Find Full Text PDF

White matter microstructural changes during the first three years of healthy brain development are characterized using two different models developed for limited clinical diffusion data: White Matter Tract Integrity (WMTI) metrics from Diffusional Kurtosis Imaging (DKI) and Neurite Orientation Dispersion and Density Imaging (NODDI). Both models reveal a non-linear increase in intra-axonal water fraction and in tortuosity of the extra-axonal space as a function of age, in the genu and splenium of the corpus callosum and the posterior limb of the internal capsule. The changes are consistent with expected behavior related to myelination and asynchrony of fiber development.

View Article and Find Full Text PDF

In this work, we show the feasibility of performing functional MRI studies with single-cell resolution. At ultrahigh magnetic field, manganese-enhanced magnetic resonance microscopy allows the identification of most motor neurons in the buccal network of Aplysia at low, nontoxic Mn(2+) concentrations. We establish that Mn(2+) accumulates intracellularly on injection into the living Aplysia and that its concentration increases when the animals are presented with a sensory stimulus.

View Article and Find Full Text PDF

There is evidence that physiological or pathological cell swelling is associated with a decrease of the apparent diffusion coefficient (ADC) of water in tissues, as measured with MRI. However the mechanism remains unclear. Magnetic resonance microscopy, performed on small tissue samples, has the potential to distinguish effects occurring at cellular and tissue levels.

View Article and Find Full Text PDF