This paper aims to raise awareness regarding the obstacles limiting alkali-activated binders' (AABs) application as a sustainable solution in the construction industry. Such an evaluation is essential in this industry, which has been introducing a wide range of alternatives to cement binders yet achieved limited utilisation. It has been recognised that technical, environmental, and economic performance should be investigated for the broader adoption of alternative construction materials.
View Article and Find Full Text PDFThe physical and mechanical properties of hemp-fibre-reinforced alkali-activated (AA) mortars under accelerated carbonation were evaluated. Two matrices of different physical and chemical properties, i.e.
View Article and Find Full Text PDFThis article presents a regression tool for predicting the compressive strength of fly ash (FA) geopolymer concrete based on a process of optimising the Matlab code of a feedforward layered neural network (FLNN). From the literature, 189 samples of different FA geopolymer concrete mix-designs were collected and analysed according to ten input variables (all relevant mix-design parameters) and the output variable (cylindrical compressive strength). The developed optimal FLNN model proved to be a powerful tool for predicting the compressive strength of FA geopolymer concrete with a small range of mean squared error (MSE = 10.
View Article and Find Full Text PDF