Publications by authors named "Ilaria Scarpelli"

Genetic testing plays a central role in myelodysplastic neoplasms (MDS) diagnosis, prognosis, and therapeutic decisions. The widely applied cytogenetic revised international prognostic scoring system (IPSS-R) was based on chromosome banding analysis (CBA). However, subsequently developed genetic methodologies, such as single nucleotide polymorphism (SNP) array, demonstrated to be a valid alternative test for MDS.

View Article and Find Full Text PDF

The gene encoding for transcription factor ETV6 presents recurrent lesions in hematologic neoplasms, most notably the ETV6-RUNX1 rearrangement in childhood B-ALL. The role of ETV6 for normal hematopoiesis is unknown, but loss of its function probably participates in oncogenic procedures. In myeloid neoplasms, ETV6-locus (12p13) deletions are rare but recurrent; ETV6 translocations are even rarer, but those reported seem to have phenotype-defining consequences.

View Article and Find Full Text PDF

Myelodysplastic syndromes (MDS) are a heterogeneous group of diseases, with a variable probability of transformation into acute leukemia, which is, in the vast majority of cases, of myeloid lineage. Nevertheless, rare cases of acute lymphoblastic leukemia in patients with previously diagnosed MDS have been reported. We describe a series of 3 cases of MDS/CMML marked with evolution to acute lymphoblastic leukemia (ALL) and provide a comprehensive review of the 49 cases documented in the literature so far.

View Article and Find Full Text PDF
Article Synopsis
  • Complex karyotype (CK) in chronic lymphocytic leukemia (CLL) has prognostic value, and genomic arrays provide detailed detection of copy-number alterations (CNAs).
  • A study analyzed 2293 genomic arrays from 13 labs, finding significant CNAs outside typical probe regions in 34% of patients, which correlated with poorer outcomes.
  • High genomic complexity (≥5 CNAs) was identified as a strong predictor of treatment timing and overall survival, indicating that genomic arrays are effective for CLL risk stratification.
View Article and Find Full Text PDF

Reciprocal RUNX1 fusions are traditionally found in up to 10% of acute myeloid leukemia (AML) patients, usually associated with a translocation (8;21)(q22;q22) corresponding to the RUNX1-RUNX1T1 fusion gene. So far, alternative RUNX1 rearrangements have been reported only rarely in AML, and the few reports so far have focused on results based on cytogenetics, fluorescence in situ hybridization, and polymerase chain reaction. Acknowledging the inherent limitations of these diagnostic techniques, the true incidence of rare RUNX1 rearrangements may be underestimated.

View Article and Find Full Text PDF