Background: Predicting pathological complete response (pCR) from pre or post-treatment features could be significant in improving the process of making clinical decisions and providing a more personalized treatment approach for better treatment outcomes. However, the lack of external validation of predictive models, missing in several published articles, is a major issue that can potentially limit the reliability and applicability of predictive models in clinical settings. Therefore, this systematic review described different externally validated methods of predicting response to neoadjuvant chemoradiotherapy (nCRT) in locally advanced rectal cancer (LARC) patients and how they could improve clinical decision-making.
View Article and Find Full Text PDFThe aim of this study was to compare CT radiomics and morphological features when assessing benign lymph nodes (LNs) in colon cancer (CC). This retrospective study included 100 CC patients (test cohort) who underwent a preoperative CT examination and were diagnosed as pN0 after surgery. Regional LNs were scored with a morphological Likert scale (NODE-SCORE) and divided into two groups: low likelihood (LLM: 0-2 points) and high likelihood (HLM: 3-7 points) of malignancy.
View Article and Find Full Text PDFObjective: The objective of this study is to prospectively compare quantitative and subjective image quality, scanning time, and diagnostic confidence between a new deep learning-based reconstruction(DLR) algorithm and standard MRI protocol of lumbar spine.
Materials And Methods: Eighty healthy volunteers underwent 1.5T MRI examination of lumbar spine from September 2021 to May 2023.
J Comput Assist Tomogr
March 2023
Image reconstruction processing in computed tomography (CT) has evolved tremendously since its creation, succeeding at optimizing radiation dose while maintaining adequate image quality. Computed tomography vendors have developed and implemented various technical advances, such as automatic noise reduction filters, automatic exposure control, and refined imaging reconstruction algorithms.Focusing on imaging reconstruction, filtered back-projection has represented the standard reconstruction algorithm for over 3 decades, obtaining adequate image quality at standard radiation dose exposures.
View Article and Find Full Text PDFAim: To test radiomic approach in patients with metastatic neuroendocrine tumors (NETs) treated with Everolimus, with the aim to predict progression-free survival (PFS) and death.
Materials And Methods: Twenty-five patients with metastatic neuroendocrine tumors, 15/25 pancreatic (60%), 9/25 ileal (36%), 1/25 lung (4%), were retrospectively enrolled between August 2013 and December 2020. All patients underwent contrast-enhanced CT before starting Everolimus, histological diagnosis, tumor grading, PFS, overall survival (OS), death, and clinical data collected.
In many low-income countries, the poor availability of lung biopsy leads to delayed diagnosis of lung cancer (LC), which can appear radiologically similar to tuberculosis (TB). To assess the ability of CT Radiomics in differentiating between TB and LC, and to evaluate the potential predictive role of clinical parameters, from March 2020 to September 2021, patients with histological diagnosis of TB or LC underwent chest CT evaluation and were retrospectively enrolled. Exclusion criteria were: availability of only enhanced CT scans, previous lung surgery and significant CT motion artefacts.
View Article and Find Full Text PDFRadiomics has the potential to play a pivotal role in oncological translational imaging, particularly in cancer detection, prognosis prediction and response to therapy evaluation. To date, several studies established Radiomics as a useful tool in oncologic imaging, able to support clinicians in practicing evidence-based medicine, uniquely tailored to each patient and tumor. Mineable data, extracted from medical images could be combined with clinical and survival parameters to develop models useful for the clinicians in cancer patients' assessment.
View Article and Find Full Text PDFRadiomics has been playing a pivotal role in oncological translational imaging, particularly in cancer diagnosis, prediction prognosis, and therapy response assessment. Recently, promising results were achieved in management of cancer patients by extracting mineable high-dimensional data from medical images, supporting clinicians in decision-making process in the new era of target therapy and personalized medicine. Radiomics could provide quantitative data, extracted from medical images, that could reflect microenvironmental tumor heterogeneity, which might be a useful information for treatment tailoring.
View Article and Find Full Text PDF