Soil-transmitted helminths cause widespread disease, infecting ~1.5 billion people living within poverty-stricken regions of tropical and subtropical countries. As adult worms inhabit the intestine alongside bacterial communities, we determined whether the bacterial microbiota impacted on host resistance against intestinal helminth infection.
View Article and Find Full Text PDFSecondary lymphoid tissues provide specialized niches for the initiation of adaptive immune responses and undergo a remarkable expansion in response to inflammatory stimuli. Although the formation of B cell follicles was previously thought to be restricted to the postnatal period, we observed that the draining mesenteric lymph nodes (mLN) of helminth-infected mice form an extensive number of new, centrally located, B cell follicles in response to IL-4Rα-dependent inflammation. IL-4Rα signaling promoted LTα1β2 (lymphotoxin) expression by B cells, which then interacted with CCL19 positive stromal cells to promote lymphoid enlargement and the formation of germinal center containing B cell follicles.
View Article and Find Full Text PDFIntestinal helminths are potent regulators of their host's immune system and can ameliorate inflammatory diseases such as allergic asthma. In the present study we have assessed whether this anti-inflammatory activity was purely intrinsic to helminths, or whether it also involved crosstalk with the local microbiota. We report that chronic infection with the murine helminth Heligmosomoides polygyrus bakeri (Hpb) altered the intestinal habitat, allowing increased short chain fatty acid (SCFA) production.
View Article and Find Full Text PDFHelminth infections are typically chronic in nature; however, the exact molecular mechanisms by which these parasites promote or thwart host immunity remain unclear. Worm expulsion requires the differentiation of CD4(+) T cells into Th2 cells, while regulatory T cells (Tregs) act to dampen the extent of the Th2 response. Priming of T cells requires drainage or capture of antigens within lymphoid tissues, and in the case of intestinal helminths, such sites include the mucosa-associated Peyer's patches (PPs) and the draining mesenteric lymph nodes (MLN).
View Article and Find Full Text PDFApproximately one-third of the world's population suffers from chronic helminth infections with no effective vaccines currently available. Antibodies and alternatively activated macrophages (AAM) form crucial components of protective immunity against challenge infections with intestinal helminths. However, the mechanisms by which antibodies target these large multi-cellular parasites remain obscure.
View Article and Find Full Text PDFObjectives: To evaluate the immunological and viral consequences of planned treatment interruptions (PTI) in children with HIV.
Design: This was an immunological and virological sub-study of the Paediatric European Network for Treatment of AIDS (PENTA) 11 trial, which compared CD4-guided PTI of antiretroviral therapy (ART) with continuous therapy (CT) in children.
Methods: HIV-1 RNA and lymphocyte subsets, including CD4 and CD8 cells, were quantified on fresh samples collected during the study; CD45RA, CD45RO and CD31 subpopulations were evaluated in some centres.
Approximately 2 billion people currently suffer from intestinal helminth infections, which are typically chronic in nature and result in growth retardation, vitamin A deficiency, anemia and poor cognitive function. Such chronicity results from co-evolution between helminths and their mammalian hosts; however, the molecular mechanisms by which these organisms avert immune rejection are not clear. We have found that the natural murine helminth, Heligmosomoides polygyrus bakeri (Hp) elicits the secretion of IL-1β in vivo and in vitro and that this cytokine is critical for shaping a mucosal environment suited to helminth chronicity.
View Article and Find Full Text PDFBackground: Toll-like receptors (TLRs) recognize pathogen-associated molecular patterns and play a crucial role in the host's innate immune response. Genetic variations in TLR genes may influence host-viral interactions and might impact upon the risk of mother-to-child transmission (MTCT) of Human Immunodeficiency Virus type 1 (HIV-1). The aim of this study was to investigate the influence of genetic variants of TLR 9 gene on MTCT.
View Article and Find Full Text PDF