Publications by authors named "Ilaria Morassut"

Layer 5 extratelencephalic (ET) neurons are present across neocortical areas and send axons to multiple subcortical targets. Two cardinal subtypes exist: (1) Slco2a1-expressing neurons (ET), which predominate in the motor cortex and project distally to the pons, medulla and spinal cord; and (2) Nprs1- or Hpgd-expressing neurons (ET), which predominate in the visual cortex and project more proximally to the pons and thalamus. An understanding of how area-specific ET and ET emerge during development is important because they are critical for fine motor skills and are susceptible to spinal cord injury and amyotrophic lateral sclerosis.

View Article and Find Full Text PDF

Ventral midbrain dopaminergic neurons project to the striatum as well as the cortex and are involved in movement control and reward-related cognition. In Parkinson's disease, nigrostriatal midbrain dopaminergic neurons degenerate and cause typical Parkinson's disease motor-related impairments, while the dysfunction of mesocorticolimbic midbrain dopaminergic neurons is implicated in addiction and neuropsychiatric disorders. Study of the development and selective neurodegeneration of the human dopaminergic system, however, has been limited due to the lack of an appropriate model and access to human material.

View Article and Find Full Text PDF

Evolutionary development of the human brain is characterized by the expansion of various brain regions. Here, we show that developmental processes specific to humans are responsible for malformations of cortical development (MCDs), which result in developmental delay and epilepsy in children. We generated a human cerebral organoid model for tuberous sclerosis complex (TSC) and identified a specific neural stem cell type, caudal late interneuron progenitor (CLIP) cells.

View Article and Find Full Text PDF

The transition of neural progenitors to differentiated postmitotic neurons is mainly considered irreversible in physiological conditions. In the present work, we show that Shh pathway activation through SmoM2 expression promotes postmitotic neurons dedifferentiation, re-entering in the cell cycle and originating medulloblastoma in vivo. Notably, human adult patients present inactivating mutations of the chromatin reader BRPF1 that are associated with SMO mutations and absent in pediatric and adolescent patients.

View Article and Find Full Text PDF