Publications by authors named "Ilaria Marcotuli"

Mixed linkage (1,3;1,4)-β-d-glucan (MLG) is a well-recognized bioactive carbohydrate and dietary fibre with expanding applications in food industry. The MLG are small components of the cell wall of vegetative tissues of cereals synthetized by members of the genes (). Within the family, the has been the major contributor in wheat.

View Article and Find Full Text PDF

Wild emmer ( ssp. ) genotypes were studied for their high-nutritional value and good tolerance to various types of stress; for this reason, several QTL (quantitative trait loci) studies have been conducted to find favorable alleles to be introgressed into modern wheat cultivars. Given the complexity of the QTL nature, their interaction with the environment, and other QTLs, a small number of genotypes have been used in wheat breeding programs.

View Article and Find Full Text PDF

In the quest for sustainable and nutritious food sources, exploration of ancient grains and wild relatives of cultivated cereals has gained attention. , a wild wheatgrass species, stands out as a promising genetic resource due to its potential for crop enhancement and intriguing nutritional properties. This manuscript investigates the gene sequence and protein structure of , employing comparative analysis with other grass species to identify potential differences impacting β-glucan content.

View Article and Find Full Text PDF

Cereals are the most broadly produced crops and represent the primary source of food worldwide. Nitrogen (N) is a critical mineral nutrient for plant growth and high yield, and the quality of cereal crops greatly depends on a suitable N supply. In the last decades, a massive use of N fertilizers has been achieved in the desire to have high yields of cereal crops, leading to damaging effects for the environment, ecosystems, and human health.

View Article and Find Full Text PDF

The presented data regards the transcriptome profiling and differential analysis with RNA-Seq approach with the following goals: de novo transcriptome assembly and genome annotation of Ficus carica and the differential expression analysis of parthenocarpic and non-partenocarpic varieties in order to identify candidate genes for the production of seedless fig. Two fig varieties Dottato and Petrelli and the caprifig were grown at the fig repository at the 'P. Martucci' experimental station in Valenzano (Bari) of University of Bari 'Aldo Moro'.

View Article and Find Full Text PDF

Data described in this article refer to molecular characterization and assessment of genetic diversity within a wide collection of pomegranate genotypes including both selections and cultivars from different geographical origin/disseminations by using microsatellite (SSR, Simple Sequence Repeats) markers. Supplied datasets refer to a set of 63 genotypes including 55 accessions (landraces) from Italy, Turkmenistan, Japan, and USA and 8 cultivars from Israel, established at the pomegranate repository of the Fruit Tree Unit of the Department of Soil, Plant and Food Science at University of Bari "Aldo Moro", Italy. Pomegranate accessions differed for end-use purpose (edible, ornamental) and some morpho-pomological traits including juice taste, inner tegmen hardness, and skin/seed color.

View Article and Find Full Text PDF

In figs, reproductive biology comprises cultivars requiring or not pollination, with female trees (edible fig) and male trees (caprifig) bearing different types of fruits. Metabolomic and genetic studies may clarify bud differentiation mechanisms behind the different fruits. We used a targeted metabolomic analysis and genetic investigation through RNA sequence and candidate gene investigation to perform a deep analysis of buds of two fig cultivars, 'Petrelli' (San Pedro type) and 'Dottato' (Common type), and one caprifig.

View Article and Find Full Text PDF

Mushrooms and derivates are well known to the scientific community for having different health benefits and exhibit a wide range of pharmacological activities, including lipid-lowering, antihypertensive, antidiabetic, antimicrobic, antiallergic, anti-inflammatory, anticancer, immunomodulating, neuroprotective and osteoprotective actions. In Europe, medical mushrooms are mainly marketed in the form of food supplements as single components or combined with other nutraceuticals. In this context, the first peculiarity that distinguishes it is the safety established through the "history of consumption" that characterizes that mushroom.

View Article and Find Full Text PDF

Knowledge of the genetic basis of traits controlling phenology, differentiation patterns, and environmental adaptation is essential to develop new cultivars under climate change conditions. Landrace collections are an appropriate platform to study the hidden variation caused by crop breeding. The use of genome-wide association analysis for phenology, climatic data and differentiation among Mediterranean landraces led to the identification of 651 marker-trait associations that could be grouped in 46 QTL hotspots.

View Article and Find Full Text PDF

Stem rinfectionust, caused by the fungus f. sp. (), is one of the most devastating fungal diseases of durum and common wheat worldwide.

View Article and Find Full Text PDF

Abiotic stress strongly affects yield-related traits in durum wheat, in particular drought is one of the main environmental factors that have effect on grain yield and plant architecture. In order to obtain new genotypes well adapted to stress conditions, the highest number of desirable traits needs to be combined in the same genotype. In this context, hundreds of quantitative trait loci (QTL) have been identified for yield-related traits in different genetic backgrounds and environments.

View Article and Find Full Text PDF

The present work focused on the identification of durum wheat QTL hotspots from a collection of genome-wide association studies, for quality traits, such as grain protein content and composition, yellow color, fiber, grain microelement content (iron, magnesium, potassium, selenium, sulfur, calcium, cadmium), kernel vitreousness, semolina, and dough quality test. For the first time a total of 10 GWAS studies, comprising 395 marker-trait associations (MTA) on 57 quality traits, with more than 1,500 genotypes from 9 association panels, were used to investigate consensus QTL hotspots representative of a wide durum wheat genetic variation. MTA were found distributed on all the A and B genomes chromosomes with minimum number of MTA observed on chromosome 5B (15) and a maximum of 45 on chromosome 7A, with an average of 28 MTA per chromosome.

View Article and Find Full Text PDF

Data described in this article refer to the evaluation of genetic variability for quantity (grain protein content, GPC) and composition (HMW-glutenin subunits and gliadins) of seed storage proteins, and two yield components (grain yield per spike, GYS, and thousand-kernel weight, TKW) in a durum wheat recombinant inbred line (RIL) population derived by an interspecific cross between the common wheat accession 02-5B-318 and the durum cv. Saragolla. This article provides datasets relative to GPC, GYS and TKW collected in the two parents and in 135 durum RIL progenies from plants grown in field trials conducted in Valenzano (Metropolitan City of Bari, BA, Italy) by a randomized complete block design with three replicates.

View Article and Find Full Text PDF

Grain dietary fiber content is an important health-promoting trait of bread wheat. A dominant dietary fiber component of wheat is the cell wall polysaccharide arabinoxylan and the goatgrass has high β-glucan content, which makes it an attractive gene source to develop wheat lines with modified fiber composition. In order to support introgression breeding, this work examined genetic variability in grain β-glucan, pentosan, and protein content in a collection of .

View Article and Find Full Text PDF

Data presented are on genetic variation of quality trait and production in a recombinant inbred line (RIL) population derived from a cross between two elite durum wheat cultivars grown in two different locations (Valenzano, metropolitan city of Bari -Italy) and Policoro (metropolitan city of Matera - Italy). The data of the two environment include: 1. β-glucan content; 2.

View Article and Find Full Text PDF

The genetic improvement of durum wheat and enhancement of plant performance often depend on the identification of stable quantitative trait loci (QTL) and closely linked molecular markers. This is essential for better understanding the genetic basis of important agronomic traits and identifying an effective method for improving selection efficiency in breeding programmes. Meta-QTL analysis is a useful approach for dissecting the genetic basis of complex traits, providing broader allelic coverage and higher mapping resolution for the identification of putative molecular markers to be used in marker-assisted selection.

View Article and Find Full Text PDF

Durum wheat is one of the most important cultivated cereal crops, providing nutrients to humans and domestic animals. Durum breeding programs prioritize the improvement of its main agronomic traits; however, the majority of these traits involve complex characteristics with a quantitative inheritance (quantitative trait loci, QTL). This can be solved with the use of genetic maps, new molecular markers, phenotyping data of segregating populations, and increased accessibility to sequences from next-generation sequencing (NGS) technologies.

View Article and Find Full Text PDF

Durum wheat is the most relevant cereal for the whole of Mediterranean agriculture, due to its intrinsic adaptation to dryland and semi-arid environments and to its strong historical cultivation tradition. It is not only relevant for the primary production sector, but also for the food industry chains associated with it. In Mediterranean environments, wheat is mostly grown under rainfed conditions and the crop is frequently exposed to environmental stresses, with high temperatures and water scarcity especially during the grain filling period.

View Article and Find Full Text PDF

The mechanism behind the bud evolution towards breba or main crop in . is uncertain. Anatomical and genetic studies may put a light on the possible similarities/differences between the two types of fruits.

View Article and Find Full Text PDF

() and (-1) are key genes involved in the synthesis and catalysis of carotenoid pigments in durum wheat, regulating the increase and decrease in these compounds, respectively, resulting in the distinct yellow color of semolina and pasta. Here, we reported new haplotype variants and/or allele combinations of these two genes significantly affecting yellow pigment content in grain and semolina through their effect on carotenoid pigments. To reach the purpose of this work, three complementary approaches were undertaken: the identification of QTLs associated to carotenoid content on a recombinant inbred line (RIL) population, the characterization of a Mediterranean panel of accessions for and genes, and monitoring the expression of and genes during grain filling on two genotypes with contrasting yellow pigments.

View Article and Find Full Text PDF

Durum wheat is one of most important cereal crops that serves as a staple dietary component for humans and domestic animals. It provides antioxidants, proteins, minerals and dietary fibre, which have beneficial properties for humans, especially as related to the health of gut microbiota. Dietary fibre is defined as carbohydrate polymers that are non-digestible in the small intestine.

View Article and Find Full Text PDF

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

View Article and Find Full Text PDF

Carotenoid pigment content is an important quality trait as it confers a natural bright yellow color to pasta preferred by consumers (whiteness vs. yellowness) and nutrients, such as provitamin A and antioxidants, essential for human diet. The main goal of the present review is to summarize the knowledge about the genetic regulation of the accumulation of pigment content in durum wheat grain and describe the genetic improvements obtained by using breeding approaches in the last two decades.

View Article and Find Full Text PDF

Cellulose synthase-like CslF and CslH genes have been implicated in the biosynthesis of β-glucans, a major cell wall constituents in grasses and cereals. The low β-glucan content of durum wheat and lack of information of the biosynthesis pathway make the expression analysis in different developmental stages of grain endosperm an interesting tool for the crop genetic improvement. Specific genome sequences of wheat CslF6 and CslH were isolated and the genomic sequence and structure were analysed in the cv.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session3ovft7t6iqpt0h1degf4faqtmsn6k893): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once