We develop a conceptual framework for studying collective adaptation in complex socio-cognitive systems, driven by dynamic interactions of social integration strategies, social environments and problem structures. Going beyond searching for 'intelligent' collectives, we integrate research from different disciplines and outline modelling approaches that can be used to begin answering questions such as why collectives sometimes fail to reach seemingly obvious solutions, how they change their strategies and network structures in response to different problems and how we can anticipate and perhaps change future harmful societal trajectories. We discuss the importance of considering path dependence, lack of optimization and collective myopia to understand the sometimes counterintuitive outcomes of collective adaptation.
View Article and Find Full Text PDFA spinlike model mimicking human behavior in groups is employed to investigate the dynamics of the decision-making process. Within the model, the temporal evolution of the state of systems is governed by a time-continuous Markov chain. The transition rates of the resulting master equation are defined in terms of the change of interaction energy between the neighboring agents (change of the level of conflict) and the change of a locally defined agent fitness.
View Article and Find Full Text PDF