Group B Streptococcus (GBS) has developed several strategies to evade immune defenses. We show that GBS induces macrophage (Mphi) membrane permeability defects and apoptosis, prevented by inhibition of calcium influx but not caspases. We analyze the molecular mechanisms of GBS-induced murine Mphi apoptosis.
View Article and Find Full Text PDFIn mammals, methylation of DNA within regulatory sites and histone deacetylase recruitment in transcriptional repressing domains are involved in the loss of the expression of retroviral DNA or repeat arrays transferred in cells for therapeutic purposes. Various investigation results suggest that methylation/deacetylation events are modulated by extracellular and cytoplasmic signal transduction pathways closely involved in regulating cell differentiation. To analyse gene silencing mechanisms and assess if potential pharmacological treatment affects gene silencing kinetics we transduced U937 myelomonocytic cells with a bicistronic retroviral construct carrying the herpes simplex virus thymidine kinase (HSV-TK) and beta-galactosidase (Lac-Z) genes.
View Article and Find Full Text PDFWe previously demonstrated that Group B Streptococcus (GBS), a pathogen that causes serious neonatal infections, induces macrophage apoptosis by beta-hemolysin to avoid the host immune response. GBS-induced macrophage apoptosis is characterized by a calcium increase and is caspase-independent. This study reports the involvement of c-Jun NH(2)-terminal kinase (JNK), p38 and extracellular signal-regulated kinase (ERK), three members of mitogen-activated protein kinases (MAPKs) family, in GBS-induced macrophage apoptosis.
View Article and Find Full Text PDFGroup B streptococcus (GBS) induced macrophage apoptosis by which it could avoid host defence mechanisms. Macrophages, which constitutively express phosphatidylserine (PtdSer) on the outer leaflet of plasma membrane, increased PtdSer exposure during GBS-induced apoptosis. Induction of apoptosis decreased PtdSer radioactivity of macrophages incubated with [(3)H]serine.
View Article and Find Full Text PDF