Publications by authors named "Ilaria Degano"

The National Museum of Transylvanian History in Cluj-Napoca, Romania, features a History of Pharmacy Collection that documents the evolution of pharmacies in the region since the 16th century. Within the "Pharmatrans" project (2021-2023), we investigated the chemical composition of ointments from fourteen historical pharmaceutical containers dating back to the 18th and 19th centuries. Most samples were from an aristocratic traveling medicine chest, a key artifact in the collection.

View Article and Find Full Text PDF

We tested the ability of wood distillate (WD) to interact with urea in agricultural soil. WD is a sustainable material that has been addressed as a promising alternative to synthetic soil corroborants. However, there is little information about the effect of WD on the nitrogen cycle.

View Article and Find Full Text PDF

Over the last few decades, significant research efforts have been devoted to developing new cleaning systems aimed at preserving cultural heritage. One of the main objectives is to selectively remove aged or undesirable coatings from painted surfaces while preventing the cleaning solvent from permeating and engaging with the pictorial layers. In this work, we propose the use of electrospun polyamide 6,6 nonwovens in conjunction with a green solvent (dimethyl carbonate).

View Article and Find Full Text PDF

The use of natural dyes in several areas is regulated by current European and non-European legislation, due to various problems with synthetic dyes. The analysis revealed that the lichen studied: Xanthoria parietina has potential natural dye sources and provides bright colors for extraction solvents. Furthermore, dyed wool and toile fabric have good fastness properties in ammonia fermentation and boiling water, both with and without mordants.

View Article and Find Full Text PDF

Acrylonitrile butadiene styrene (ABS) is a thermoplastic polymer widely used in several everyday life applications; moreover, it is also one of the most employed plastics in contemporary artworks and design objects. In this study, the chemical and thermal properties of an ABS-based polymer and its photo-degradation process were investigated through a multi-analytical approach based on thermal, mass spectrometric and spectroscopic techniques. LEGO building blocks were selected for studying the ABS properties.

View Article and Find Full Text PDF

From the Pioneer Era of the aviation to World War I the evolution of aircraft technology and chemical synthesis enabled a unique coexistence of traditional craftsmanship, artistic decoration practices, and technological advancements. The study of the materials used in these early years of aviation is still an uncharted territory: a vast portion of remaining planes has been partially or completely repaired and restored, usually by total replacement of the fabric. The Italian biplane Ansaldo A.

View Article and Find Full Text PDF

Iron gall inks have been among the most used writing materials after carbon black, thus representing an important element of the historical and artistic heritage of our society. Crucially, the preservation of manuscripts and drawings is influenced by the presence of these inks, leading to conservation issues related to paper degradation and text fading. Besides all the advances obtained in paper conservation, the study of iron gall ink's behaviour and ageing is still an important topic, which requires investigation through an accurate molecular characterisation to produce reliable models.

View Article and Find Full Text PDF

The analysis of archeological artifacts, due to the high value of antique objects, is preferably performed by nondestructive, noninvasive, and techniques. At present, the most common protocols used for the analysis of organic materials are spectroscopic approaches. In this work, we tested selected-ion flow tube-mass spectrometry (SIFT-MS), a transportable mass spectrometry system for the characterization and discrimination of natural resins by the analysis of their volatile organic compounds profiles.

View Article and Find Full Text PDF

In this study, we developed and applied a new spectroscopic fluorescence method for the detection of the early events in the interaction between tobacco ( L.) plants and pathogenic bacteria. The leaf disks were infiltrated with a bacterial suspension in sterile physiological solution (SPS), or with SPS alone as control.

View Article and Find Full Text PDF

Four propargyl -glycosides derivatized with mannose, glucose, and fructose moieties were synthesized and then incorporated within a diiron structure as part of a vinyliminium ligand. Hence, six glycoconjugated diiron complexes, []CFSO (see Scheme 1) and the nonglycosylated analogues []CFSO, were obtained in high yields and unambiguously characterized by elemental analysis, mass spectrometry, and IR and multinuclear NMR spectroscopies. All compounds exhibited a significant stability in DMSO- /DO solution, with 63-89% of the complexes unaltered after 72 h at 37 °C and also in the cell culture medium.

View Article and Find Full Text PDF
Article Synopsis
  • Plastic pollution is harming marine environments, particularly through micro and nano particles that affect marine life.
  • A new analysis workflow was developed using marine sponges to monitor and analyze plastic contamination in the Maldivian reef habitat.
  • Results showed that 70% of sponges contained plastic particles, with an average of 1.2 particles per gram of tissue, confirming the effectiveness of sponges as biosamplers for plastic pollution.
View Article and Find Full Text PDF

Four bipyridine-type ligands variably derivatized with two bioactive groups (taken from ethacrynic acid, flurbiprofen, biotin, and benzylpenicillin) were prepared via sequential esterification steps from commercial 2,2'-bipyridine-4,4'-dicarboxylic acid and subsequently coordinated to ruthenium(II) -cymene and iridium(III) pentamethylcyclopentadienyl scaffolds. The resulting complexes were isolated as nitrate salts in high yields and fully characterized by analytical and spectroscopic methods. NMR and MS studies in aqueous solution and in cell culture medium highlighted a substantial stability of ligand coordination and a slow release of the bioactive fragments in the latter case.

View Article and Find Full Text PDF

Among the artists' materials of the nineteenth century, pastel crayons merit scientific interest since their early commercial formulations are mostly unknown and, until now, have been considerably less studied with respect to other contemporary painting materials. In this framework, research herein reports the results of a comprehensive multi-analytical study of 44 pastel crayons of two recognized brands (LeFranc and Dr. F.

View Article and Find Full Text PDF

Sampling, separation, detection, and characterization of microplastics (MPs) dispersed in natural water bodies and ecosystems is a challenging and critical issue for a better understanding of the hazards for the environment posed by such nearly ubiquitous and still largely unknown form of pollution. There is still the need for exhaustive, reliable, accurate, reasonably fast, and cost-efficient analytical protocols allowing the quantification not only of MPs but also of nanoplastics (NPs) and of the harmful molecular pollutants that may result from degrading plastics. Here a set of newly developed analytical protocols, integrated with specialized techniques such as pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS), for the accurate and selective determination of the polymers most commonly found as MPs polluting marine and freshwater sediments are presented.

View Article and Find Full Text PDF

Pollution from microplastics (MPs) has become one of the most relevant topics in environmental chemistry. The risks related to MPs include their capability to adsorb toxic and harmful molecular species, and to release additives and degradation products into ecosystems. Their role as a primary source of a broad range of harmful volatile organic compounds (VOCs) has also been recently reported.

View Article and Find Full Text PDF

The biological electron transfer reactions play an important role in the bioactivity of drugs; thus, the knowledge of their electrochemical behavior is crucial. The formation of radicals during oxidation or reduction, the presence of short-living intermediates, the determination of reaction mechanisms involving electron and proton transfers, all contribute to the comprehension of drug activities and the determination of their mode of action and their metabolites. In addition, if a drug is encapsulated in the cyclodextrin cavity, its electrochemical properties can change compared to a free drug molecule.

View Article and Find Full Text PDF

Lipid characterization in art and archeology, together with the study of lipid degradation processes, is an important research area in heritage science. Lipid-based materials have been used as food since ancient times, but also employed as illuminants and as ingredients in cosmetic, ritual, and pharmaceutical preparations. Both animal and plant lipids have also been processed to produce materials used in art and crafts, such as paint binders, varnishes, waterproofing agents, and coatings.

View Article and Find Full Text PDF

Rationale: Today, β-naphthol pigments are among the largest and most widely used classes of synthetic organic pigments. Their application fields range from textiles, food and beverages, printing inks, plastics to paint formulations. Most of the research dealing with their study using mass spectrometry focuses on developing sensitive methods for their quantification or their removal from industrial wastewater.

View Article and Find Full Text PDF

This work presents a method to characterize high molecular esters in beeswax and resinous substances based on the use of microwave-assisted extraction and flow injection analysis-high resolution mass spectrometry that combines the high efficiency of the extraction procedure with the advantages of high resolution mass spectrometry. This approach allows us to identify archaeological beeswax and plant resinous substances by the characterization of the survived intact high molecular weight components. By this way, several raw materials (beeswax, pine resin and pitch, and resin extracted from Euphorbia tirucalli) were studied and used as reference substances.

View Article and Find Full Text PDF

A fast non-destructive approach based on the use of portable selected ion flow tube-mass spectrometry (SIFT-MS) was used for the first time to characterize organic materials in archaeological artifacts. The high sensitivity, specificity and selectivity SIFT soft chemical ionization mass spectrometry enabled us to investigate the composition of organic residues collected from ancient Egyptian findings in order to demonstrate the robustness of the techniques with different matrices. In addition, we tested SIFT-MS directly on an archaeological Egyptian amphora to prove its suitability as a completely non-invasive technique.

View Article and Find Full Text PDF

Historical and archaeological textiles are among the most crucial and vulnerable records of our social and cultural history. Analysis of organic colorants found in these materials is unquestionably one of the most powerful tools to understand historical developments, cultural exchanges, and progress in science and technology. Natural anthraquinones represent the most commonly used natural colorants for textile dyeing until the late 19th century.

View Article and Find Full Text PDF

The identification at molecular level of organic materials in heritage objects as paintings requires in most cases the collection of micro-samples followed by micro-destructive analysis. In this study, we explore the possibility to characterize natural and synthetic resins used as paint varnishes by mean of non-invasive analysis of released volatile organic compounds (VOCs) through selected ion flow tube-mass spectrometry (SIFT-MS). SIFT-MS is a portable direct mass spectrometric technique that achieves the analysis of VOCs at trace levels in real time, by controlled ultra-soft chemical ionization using eight different chemical ionization agents.

View Article and Find Full Text PDF

Natural tannins from various plants have been used throughout human history in textile dyeing, often as mordant dyes. The ageing behavior of these dyes is a challenge in conservation science, requiring a thorough knowledge of the textile-mordant-dye system. In this work, we analyzed reference wool yarns dyed with natural tannins from oak gallnuts, walnut (), and catechu (), after artificial ageing.

View Article and Find Full Text PDF

Hafting of stone tools was an important advance in the technology of the Paleolithic. Evidence of hafting in the Middle Paleolithic is growing and is not limited to points hafted on spears for thrusting or throwing. This article describes the identification of adhesive used for hafting on a variety of stone tools from two Middle Paleolithic caves in Latium, Fossellone Cave and Sant'Agostino Cave.

View Article and Find Full Text PDF

Modern oil paintings are affected by conservation issues related to the oil paint formulations and to the fact that they are often unvarnished, and in direct contact with the environment. Understanding the evolution of the molecular composition of modern oil paint during ageing, under the influence of environmental factors, is fundamental for a better knowledge of degradation phenomena and risk factors affecting modern art. We investigated for the first time the influence of relative humidity on the chemical composition of modern oil paints during curing and artificial ageing.

View Article and Find Full Text PDF