Publications by authors named "Ilaria Benedetti"

This study was designed to explore learning experiences of university students with dyslexia and factors that could contribute to their success in the university career. Although, great efforts have been made to diagnose dyslexia and to mitigate its effects at primary and secondary school, little has been done at the university level in particular in the Italian context. Indeed in the university context, the availability and possibility to use of support tools, that enable the student to achieve educational success, is still not sufficiently adequate.

View Article and Find Full Text PDF

The potential of LacI/P , XylS/P , AlkS/P , CprK/P and ChnR/P regulatory nodes, recruited from both Gram-negative and Gram-positive bacteria, as the source of parts for formatting expression cargoes following the Standard European Vector Architecture (SEVA) has been examined. The five expression devices, which cover most known regulatory configurations in bacteria were assembled within exactly the same plasmid backbone and bearing the different functional segments arrayed in an invariable DNA scaffold. Their performance was then analysed in an Escherichia coli strain of reference through the readout of a fluorescence reporter gene that contained strictly identical translation signal elements.

View Article and Find Full Text PDF

Dietary patterns play key roles in health promotion and in preserving the environment. A growing number of studies show the importance of individual factors on food consumption choices, such as socio-economic status, lifestyle variables and contextual and social factors that characterize the geographical area in which individuals reside. The Mediterranean Diet is a sustainable diet that respects the environment, thus reducing per capita emissions from food production in respect to less sustainable diet.

View Article and Find Full Text PDF

Gene expression noise is not only the mere consequence of stochasticity, but also a signal that reflects the upstream physical dynamics of the cognate molecular machinery. Soil bacteria facing recalcitrant pollutants exploit noise of catabolic promoters to deploy beneficial phenotypes such as metabolic bet-hedging and/or division of biochemical labor. Although the role of upstream promoter-regulator interplay in the origin of this noise is little understood, its specifications are probably ciphered in flow cytometry data patterns.

View Article and Find Full Text PDF

Engineering of robust microbial cell factories requires the use of dedicated genetic tools somewhat different from those traditionally used for laboratory-adapted microorganisms. We have edited and formatted the ChnR/P chnB regulatory node of Acinetobacter johnsonii to ease the targeted engineering of ectopic gene expression in Gram-negative bacteria. The proposed compositional standard was thoroughly verified with a monomeric and superfolder green fluorescent protein (msf•GFP) in Escherichia coli.

View Article and Find Full Text PDF

Transcriptional noise is a necessary consequence of the molecular events that drive gene expression in prokaryotes. However, some environmental microorganisms that inhabit polluted sites, for example, the m-xylene degrading soil bacterium Pseudomonas putida mt-2 seem to have co-opted evolutionarily such a noise for deploying a metabolic diversification strategy that allows a cautious exploration of new chemical landscapes. We have examined this phenomenon under the light of deterministic and stochastic models for activation of the main promoter of the master m-xylene responsive promoter of the system (Pu) by its cognate transcriptional factor (XylR).

View Article and Find Full Text PDF

Bacterial biofilms outperform planktonic counterparts in whole-cell biocatalysis. The transition between planktonic and biofilm lifestyles of the platform strain Pseudomonas putida KT2440 is ruled by a regulatory network controlling the levels of the trigger signal cyclic di-GMP (c-di-GMP). This circumstance was exploited for designing a genetic device that over-runs the synthesis or degradation of c-di-GMP--thus making P.

View Article and Find Full Text PDF

The soil bacterium Pseudomonas putida is increasingly attracting considerable interest as a platform for advanced metabolic engineering through synthetic biology approaches. However, genomic context, gene copy number, and transcription/translation interplay often introduce considerable uncertainty to the design of reliable genetic constructs. In this work, we have established a standardized heterologous expression device in which the promoter strength is the only variable; the remaining parameters of the flow have stable default values.

View Article and Find Full Text PDF

The scientific and technical ambition of contemporary synthetic biology is the engineering of biological objects with a degree of predictability comparable to those made through electric and industrial manufacturing. To this end, biological parts with given specifications are sequence-edited, standardized, and combined into devices, which are assembled into complete systems. This goal, however, faces the customary context dependency of biological ingredients and their amenability to mutation.

View Article and Find Full Text PDF

Reporter genes are widely used to quantify promoter activity, which controls production of mRNA through the interplay with RNA polymerases and transcription factors. Some of such reporters have either diffuse (lux) or focused (GFP) optical outputs that allow description of transcriptional activity in populations and in single cells. This chapter discusses the use of a dual reporter system GFP-luxCDABE that is placed in broad-host-range plasmids having origins of replication from RK2 and pBBR1.

View Article and Find Full Text PDF

Bacteria display considerable cell-to-cell heterogeneity in a number of genetic and physiological traits. Stochastic differences in regulatory patterns (e.g.

View Article and Find Full Text PDF

A dual promoter probe system based on a tandem bi-cistronic GFP-luxCDABE reporter cassette is described and implemented. This system is assembled in two synthetic, modular, broad-host range plasmids based on pBBR1 and RK2 origins of replication, allowing its utilization in an extensive number of gram-negative bacteria. We analyze the performance of this dual cassette in two hosts, Escherichia coli and Pseudomonas putida, by examining the induction properties of the lacI(q)-Ptrc expression system in the first host and the Pb promoter of the benzoate degradation pathway in the second host.

View Article and Find Full Text PDF