Publications by authors named "Ilaria Bellini"

Background: Anisakis spp. are zoonotic nematodes causing mild to severe acute and chronic gastrointestinal infections. Chronic anisakiasis can lead to erosive mucosal ulcers, granulomas and inflammation, potential tumorigenic triggers.

View Article and Find Full Text PDF

Nematodes of the genus (Rhabditida, Anisakidae) are zoonotic fish-borne parasites and cause anisakiasis, a disease with mild to severe acute or chronic gastrointestinal and allergic symptoms and signs. Anisakiasis can potentially lead to misdiagnosis or delay in diagnosis, and it has been suggested as a risk factor for gastrointestinal tumors. Here, we describe a case report of a 25-year-old woman who presented with gastrointestinal (abdominal pain, nausea, diarrhea) and allergic (diffuse skin rash) symptoms and reported ingestion of raw fish contaminated by worms.

View Article and Find Full Text PDF

: spp. third-stage larvae (L3) are the causative agents of human zoonosis called anisakiasis. The accidental ingestion of L3 can cause acute and chronic inflammation at the gastric, intestinal, or ectopic levels.

View Article and Find Full Text PDF

Anisakiasis is a zoonosis caused by the ingestion of raw or undercooked seafood infected with third-stage larvae (L3) of the marine nematode . Based on L3 localization in human accidental hosts, gastric, intestinal or ectopic (extra-gastrointestinal) anisakiasis can occur, in association with mild to severe symptoms of an allergic nature. Given the increasing consumption of fish worldwide, the European Food Safety Authority declared as an emerging pathogen.

View Article and Find Full Text PDF

Advancements in technologies employed in high-throughput next-generation sequencing (NGS) methods are supporting the spread of studies that, combined with advances in computational biology and bioinformatics, have greatly accelerated discoveries within basic and biomedical research for many parasitic diseases. Here, we review the most updated "omic" studies performed on anisakid nematodes, a family of marine parasites that are causative agents of the fish-borne zoonosis known as anisakiasis or anisakidosis. Few deposited data on genomes are so far available, and this still hinders the deep and highly accurate characterization of biological aspects of interest, even as several transcriptomic and proteomic studies are becoming available.

View Article and Find Full Text PDF

The transcription of the DeltaN133p53 isoform of the TP53 gene is controlled by an internal promoter region (IPR) containing eight polymorphisms in 11 common haplotypes, following a resequencing of 47 Caucasians. We assayed the functional effects of the commonest six haplotypes on the promoter activity with a luciferase reporter system, in HeLa and 293T cells. These studies showed that different IPR haplotypes are associated with differences in the promoter activity resulting in marked variation in the baseline expression of DeltaN133p53.

View Article and Find Full Text PDF

An oligonucleotide microarray based on the arrayed-primer extension (APEX) technique has been developed to simultaneously identify pathogenic fungi frequently isolated from invasive and superficial infections. Species-specific oligonucleotide probes complementary to the internal transcribed spacer 1 and 2 (ITS1 and ITS2) region were designed for 24 species belonging to 10 genera, including Candida species (Candida albicans, Candida dubliniensis, Candida famata, Candida glabrata, Candida tropicalis, Candida kefyr, Candida krusei, Candida guilliermondii, Candida lusitaniae, Candida metapsilosis, Candida orthopsilosis, Candida parapsilosis, and Candida pulcherrima), Cryptococcus neoformans, Aspergillus species (Aspergillus fumigatus and Aspergillus terreus), Trichophyton species (Trichophyton rubrum and Trichophyton tonsurans), Trichosporon cutaneum, Epidermophyton floccosum, Fusarium solani, Microsporum canis, Penicillium marneffei, and Saccharomyces cerevisiae. The microarray was tested for its specificity with a panel of reference and blinded clinical isolates.

View Article and Find Full Text PDF

The role of genes coding for xenobiotic metabolizing enzymes (XMEs) and the risk of lung cancer is unclear. Under the assumption that these genes may be more important among people having a diagnosis of lung cancer at younger ages, we have investigated the role of single-nucleotide polymorphisms (SNPs) within phase I and phase II XME genes, and also genes involved in the metabolism of nucleic acids in a series of young onset patients and matched controls. We genotyped 299 lung cancer cases diagnosed before the age of 50 and 317 controls, from six countries of Central and Eastern Europe, by use of an oligonucleotide microarray and arrayed primer extension technique for 45 SNPs in 15 phase I XME genes, 46 SNPs in 17 phase II genes and 9 SNPs in 4 genes related to metabolism of nucleic acids.

View Article and Find Full Text PDF