Publications by authors named "Ilana Spanier"

We examined the effect of ovariectomy, with and without estradiol treatment, on 18 kDa translocator protein (TSPO) gene expression and its binding density in the uterus and kidney of rats. Ovariectomy causes a significant decrease in uterine, but not renal TSPO binding density, while estradiol treatment of ovariectomized rats restored TSPO binding density in the uterus. These TSPO density levels did not correlate with steady state or new RNA transcription.

View Article and Find Full Text PDF

Objective: The involvement of the 18-kDa translocator protein (TSPO), formerly known as the peripheral-type benzodiazepine receptor, in apoptosis regulation of HT29 colorectal cancer cells was studied in-vitro. In-vivo TSPO involvement in tumor growth of HT29 cells xenografted into SCID mice was studied.

Methods: Knockdown of TSPO expression in the human HT29 cell line was established by stable transfection with vectors containing the TSPO gene in the antisense direction.

View Article and Find Full Text PDF

Background: We have previously shown that the anti-neoplastic agent erucylphosphohomocholine (ErPC3) requires the mitochondrial 18 kDa Translocator protein (TSPO), formerly known as the peripheral-type benzodiazepine receptor (PBR), to induce cell death via the mitochondrial apoptosis pathway.

Methods: With the aid of the dye JC-1 and cyclosporin A, applied to glioblastoma cells, we now investigated the significance of opening of the mitochondrial permeability transition pore (MPTP) for ErPC3-induced apoptosis in interaction with the TSPO ligands, PK 11195 and Ro5 4864. Furthermore, we measured cytochrome c release, and caspase-9 and -3 activation in this paradigm.

View Article and Find Full Text PDF

Peripheral-type benzodiazepine receptors (PBR) are constituted by three protein components, the isoquinoline binding protein (IBP), the voltage-dependent anion channel (VDAC), and the adenine nucleotide transporter (ANT). Recently, we found that high levels of PBR ligand binding in glioma cell lines correlate with in vitro tumorigenicity. To study whether enhanced PBR expression is causative or in response to cancer, we genetically modified C6 glioma cells.

View Article and Find Full Text PDF

Peripheral benzodiazepine receptors (PBR), first described more than 20 years ago, have been attributed with many putative functions including ones in cellular proliferation and cellular respiration. Hence, it is quite conceivable that deregulation of this receptor could lead to pathology. We and others have reported the existence of PBR overexpression in different human and nonhuman malignancies, but it has never been made clear whether this aberrant malignant PBR expression is a cause or consequence of the cancer.

View Article and Find Full Text PDF

The peripheral-type benzodiazepine receptor is found primarily on the outer mitochondrial membrane and consists of three subunits: the 18kDa isoquinoline binding protein, the 32kDa voltage-dependent anion channel, and the 30kDa adenine nucleotide transporter. The current study evaluates the potential importance of peripheral-type benzodiazepine receptor expression in glioma cell tumorigenicity. While previous studies have suggested that peripheral-type benzodiazepine receptor-binding may be relatively increased in tumor tissue and cells, so far, little is known about the relationships between peripheral-type benzodiazepine receptor density and factors underlying tumorigenicity.

View Article and Find Full Text PDF