Following Toll-like receptor 4 (TLR4) stimulation of macrophages, negative feedback mediated by the anti-inflammatory cytokine interleukin-10 (IL-10) limits the inflammatory response. However, extensive cell-to-cell variability in TLR4-stimulated cytokine secretion raises questions about how negative feedback is robustly implemented. To explore this, we characterize the TLR4-stimulated secretion program in primary murine macrophages using a single-cell microwell assay that enables evaluation of functional autocrine IL-10 signaling.
View Article and Find Full Text PDFMacrophages are innate immune cells that contribute to fighting infections, tissue repair, and maintaining tissue homeostasis. To enable such functional diversity, macrophages resolve potentially conflicting cues in the microenvironment via mechanisms that are unclear. Here, we use single-cell RNA sequencing to explore how individual macrophages respond when co-stimulated with inflammatory stimuli LPS and IFN-γ and the resolving cytokine IL-4.
View Article and Find Full Text PDFThe mechanistic target of rapamycin complex 1 (mTORC1) is a central regulator of cell growth that is often aberrantly activated in cancer. However, mTORC1 inhibitors, such as rapamycin, have limited effectiveness as single agent cancer therapies, with feedback mechanisms inherent to the signaling network thought to diminish the anti-tumor effects of mTORC1 inhibition. Here, we identify the protein kinase and proto-oncogene PIM3 as being repressed downstream of mTORC1 signaling.
View Article and Find Full Text PDFTrends Pharmacol Sci
January 2015
Too often, young students fail to translate their childhood curiosity into a passion for scientific discovery. The Journal of Emerging Investigators (JEI) aims to stimulate scientific curiosity in middle and high school students by providing them with an opportunity to publish their science projects in an open-access, peer-reviewed journal.
View Article and Find Full Text PDFGenomics has revolutionized and personalized our approach to cancer therapy, with clinical trials now frequently involving patient stratification based on tumor genotype. Rational drug design specifically targeting the most common genetic events and aberrantly regulated pathways in human cancers makes this approach possible. However, our understanding of the wiring of oncogenic signaling networks and the key downstream effectors driving human cancers is incomplete, limiting our ability to predict clinical responses or identify mechanisms of resistance to targeted therapeutics.
View Article and Find Full Text PDFBioorg Med Chem Lett
January 2012
C-di-GMP has emerged as an important bacterial signaling molecule that is involved in biofilm formation. Small molecules that can form biologically inactive complexes with c-di-GMP have the potential to be used as anti-biofilm agents. Herein, we report that water-soluble diamidinium/iminium aromatics (such as berenil), which are traditionally considered as minor groove binders of nucleic acids, are capable of aggregating c-di-GMP into G-quadruplexes via π-stacking interactions.
View Article and Find Full Text PDFThe ubiquitous bacterial biofilm regulator, c-di-GMP can form G-quadruplexes at physiological conditions in the presence of some aromatic compounds, such as acriflavine and proflavine. The fluorescence of these compounds is quenched upon c-di-GMP binding and some of the formed c-di-GMP G-quadruplexes are stable even at 75 °C.
View Article and Find Full Text PDFRecently, there has been an explosion of research activities in the cyclic dinucleotides field. Cyclic dinucleotides, such as c-di-GMP and c-di-AMP, have been shown to regulate bacterial virulence and biofilm formation. c-di-GMP can exist in different aggregate forms, and it has been demonstrated that the polymorphism of c-di-GMP is influenced by the nature of cation that is present in solution.
View Article and Find Full Text PDF