Transmission of the deadly malaria parasite Plasmodium falciparum from humans to mosquitoes is achieved by specialized intraerythrocytic sexual forms called gametocytes. Though the crucial regulatory mechanisms leading to gametocyte commitment have recently come to light, networks of genes that control sexual development remain to be elucidated. Here, we report a pooled-mutant screen to identify genes associated with gametocyte development in P.
View Article and Find Full Text PDFConversion from asexual proliferation to sexual differentiation initiates the production of the gametocyte, which is the malaria parasite stage required for human-to-mosquito transmission. This protocol describes an assay designed to probe the effect of drugs or other perturbations on asexual replication, sexual conversion and early gametocyte development in the major human malaria parasite Plasmodium falciparum. Synchronized asexually replicating parasites are induced for gametocyte production by the addition of conditioned medium, and they are then exposed to the treatment of interest during sexual commitment or at any subsequent stage of early gametocyte development.
View Article and Find Full Text PDFThe asexual forms of the malaria parasite Plasmodium falciparum are adapted for chronic persistence in human red blood cells, continuously evading host immunity using epigenetically regulated antigenic variation of virulence-associated genes. Parasite survival on a population level also requires differentiation into sexual forms, an obligatory step for further human transmission. We reveal that the essential nuclear gene, P.
View Article and Find Full Text PDFOne of the critical gaps in malaria transmission biology and surveillance is our lack of knowledge about Plasmodium falciparum gametocyte biology, especially sexual dimorphic development and how sex ratios that may influence transmission from the human to the mosquito. Dissecting this process has been hampered by the lack of sex-specific protein markers for the circulating, mature stage V gametocytes. The current evidence suggests a high degree of conservation in gametocyte gene complement across Plasmodium, and therefore presumably for sex-specific genes as well.
View Article and Find Full Text PDFThe mechanisms underlying sexual stage switching in Plasmodium spp. have hitherto remained a mystery. However, two recent studies have revealed that an apicomplexan-specific DNA-binding protein is essential for the initiation of this cell fate decision, ultimately providing the malaria community with a novel and important tool in the battle to prevent malaria transmission.
View Article and Find Full Text PDFHumans and mice infected with different Plasmodium strains are known to produce microvesicles derived from the infected red blood cells (RBCs), denoted RMVs. Studies in mice have shown that RMVs are elevated during infection and have proinflammatory activity. Here we present a detailed characterization of RMV composition and function in the human malaria parasite Plasmodium falciparum.
View Article and Find Full Text PDF