Publications by authors named "Ilana Goldberg-Cohen"

Background: Most patients with non-small cell lung cancer (NSCLC) present with advanced disease and have poor long-term prognosis. Advanced NSCLC that contains characteristic mutations in epidermal growth factor receptor (EGFR) are highly sensitive to EGFR tyrosine kinase inhibitors (TKIs). EGFR exon 19 insertions mutations are rare, and response to TKIs is still unclear.

View Article and Find Full Text PDF

Embryonic stem (ES) cells are cells derived from the inner cell mass of a blastocyst stage embryo. These self-renewing multipotent cells are able to differentiate to the three embryonic germ layers, the endoderm, ectoderm, and mesoderm, and are thus able to produce virtually all cell types. The ES cell capacity to generate various cell types has been studied extensively, and exploitation of ES cell characteristics allowed the production of several differentiated cell types of multiple tissues.

View Article and Find Full Text PDF

Embryonic stem cells, derived from the inner cell mass of embryos in the blastocyst stage, are cells capable of perpetual self-renewal and long-term propagation and hold the potential to differentiate to progeny of the three embryonic germ layers. Since their derivation approximately two decades ago, exploration of mouse ES cells made major advances in ES cell differentiation research and in the successful development and propagation of various cell types. The subsequent derivation of ES cells from human embryos allows detailed study of early developmental events practically unreachable in early human embryos, and the potential derivation of a variety of adult cell types differentiated from the ES cells holds immense therapeutic promise.

View Article and Find Full Text PDF

Angiogenesis, or new blood vessel formation, is a physiological response of tissues to hypoxia or ischemia. Vascular endothelial growth factor (VEGF) is a potent angiogenic factor that is up-regulated by hypoxia. The mechanisms responsible for hypoxic induction of VEGF are still not completely understood, though both transcriptional and post-transcriptional mechanisms are involved.

View Article and Find Full Text PDF

VEGF is a critical mediator of hypoxia-induced angiogenesis in numerous physiological and pathophysiological conditions. The hypoxic induction of VEGF is due in large part to an increase in the stability of its mRNA. We recently demonstrated that the stabilization of VEGF mRNA by hypoxia is dependent upon the RNA-binding protein HuR.

View Article and Find Full Text PDF