Somatic PTPN11 mutations cause juvenile myelomonocytic leukemia (JMML). Germline PTPN11 defects cause Noonan syndrome (NS), and specific inherited mutations cause NS/JMML. Here, we report that hematopoietic cells differentiated from human induced pluripotent stem cells (hiPSCs) harboring NS/JMML-causing PTPN11 mutations recapitulated JMML features.
View Article and Find Full Text PDFThe conclusions reached by a diverse group of scientists who attended an intense 2-day workshop on hybrid organic-inorganic perovskites are presented, including their thoughts on the most burning fundamental and practical questions regarding this unique class of materials, and their suggestions on various approaches to resolve these issues.
View Article and Find Full Text PDFPhys Chem Chem Phys
November 2014
The interpretation of Onsager cross transport coefficients measured in mixed ionic electronic conductor (MIEC) oxides is examined. It is demonstrated that the cross terms are an artifact of the way the measurements are analyzed. When an appropriate, comprehensive defect model is considered for the MIEC, no cross terms are required.
View Article and Find Full Text PDFDilated cardiomyopathy (DCM) is a highly heterogeneous trait with sarcomeric gene mutations predominating. The cause of a substantial percentage of DCMs remains unknown, and no gene-specific therapy is available. On the basis of resequencing of 513 DCM cases and 1,150 matched controls from various cohorts of distinct ancestry, we discovered rare, functional RAF1 mutations in 3 of the cohorts (South Indian, North Indian and Japanese).
View Article and Find Full Text PDFIn order to study the effects of Hepatocyte Growth Factor (HGF) in the heart, two transgenic mice were developed, one carrying a bidirectional HGF-TetO-GFP responder construct and the other carrying a α-MHC-tTA transactivator construct. Crosses were carried out between heterozygotes, so that litters contained bitransgenic α-MHC-tTA/HGF-TetO-GFP+, thus expressing HGF and GFP exclusively in the heart and only in the absence of Doxycycline. Our data show that the expression of HGF was indeed restricted to the heart and that the expression was limited to the timeframe of the absence of Doxycycline.
View Article and Find Full Text PDFBackground: The Hepatocyte Growth Factor (HGF) is a pleiotropic cytokine involved in many physiological processes, including skeletal muscle, placenta and liver development. Little is known about its role and that of Met tyrosine kinase receptor in cardiac development.
Methodology/principal Findings: In this study, we generated two transgenic mice with cardiac-specific, tetracycline-suppressible expression of either Hepatocyte Growth Factor (HGF) or the constitutively activated Tpr-Met kinase to explore: i) the effect of stimulation of the endogenous Met receptor by autocrine production of HGF and ii) the consequence of sustained activation of Met signalling in the heart.
We show that within the validity range of local thermal equilibrium--therein, however, irrespective of the magnitude of the driving force--a simple current equation can be formulated that expresses the current in terms of a product of a local nonequilibrium conductivity and a sinh function of half the electrochemical potential drop (normalized with respect to kBT) over the local hopping distance. This local current/driving force relation takes account of both electrical and compositional effects and can be generalized as to include interactions and structural variations.
View Article and Find Full Text PDFPAX3-FKHR, the product of a rearrangement of PAX3 with FKHR is the pathogenetic marker for alveolar rhabdomyosarcoma, an aggressive form of childhood cancer. In this work we show that PAX3-FKHR, which is a stronger transcriptional activator relative to PAX3, can lead to two apparently irreconcilable outcomes: transformation and terminal myogenic differentiation. Fibroblasts (10T1/2, NIH3T3, and a newly established murine line named 'Plus') transduced by PAX3-FKHR acquire transformed features such as anchorage independence and loss of contact inhibition and concomitantly undergo various degrees of myogenic conversion depending on the host cells, including, in the case of the Plus line, terminal differentiation into contractile myotubes.
View Article and Find Full Text PDF