Publications by authors named "Ilan Eskinazi"

Hypothesis: Musculoskeletal computer models provide valuable insights into shoulder biomechanics. The shoulder is a complex joint composed of glenohumeral, scapulothoracic, acromioclavicular, and sternoclavicular articulations, whose function is largely dependent on the many muscles spanning these joints. However, the range of patient-to-patient variability in shoulder function is largely unknown.

View Article and Find Full Text PDF

Concurrent estimation of muscle activations, joint contact forces, and joint kinematics by means of gradient-based optimization of musculoskeletal models is hindered by computationally expensive and non-smooth joint contact and muscle wrapping algorithms. We present a framework that simultaneously speeds up computation and removes sources of non-smoothness from muscle force optimizations using a combination of parallelization and surrogate modeling, with special emphasis on a novel method for modeling joint contact as a surrogate model of a static analysis. The approach allows one to efficiently introduce elastic joint contact models within static and dynamic optimizations of human motion.

View Article and Find Full Text PDF

Researchers have explored a variety of neurorehabilitation approaches to restore normal walking function following a stroke. However, there is currently no objective means for prescribing and implementing treatments that are likely to maximize recovery of walking function for any particular patient. As a first step toward optimizing neurorehabilitation effectiveness, this study develops and evaluates a patient-specific synergy-controlled neuromusculoskeletal simulation framework that can predict walking motions for an individual post-stroke.

View Article and Find Full Text PDF

Deformable joint contact models can be used to estimate loading conditions for cartilage-cartilage, implant-implant, human-orthotic, and foot-ground interactions. However, contact evaluations are often so expensive computationally that they can be prohibitive for simulations or optimizations requiring thousands or even millions of contact evaluations. To overcome this limitation, we developed a novel surrogate contact modeling method based on artificial neural networks (ANNs).

View Article and Find Full Text PDF

Goal: Incorporation of elastic joint contact models into simulations of human movement could facilitate studying the interactions between muscles, ligaments, and bones. Unfortunately, elastic joint contact models are often too expensive computationally to be used within iterative simulation frameworks. This limitation can be overcome by using fast and accurate surrogate contact models that fit or interpolate input-output data sampled from existing elastic contact models.

View Article and Find Full Text PDF